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1A. Thermodynamics
* 1st Law - energy conservation

AU+ W=0

 2nd Law... what does it mean?

AS = Q +AS,
T

ASirr = O



AS = Q +AS.
T

AS. =0

S: entropy is a state variable.
There are reversible processes.

Entropy is conserved for reversible adiabatic
transformations, i.e. two systems have the
same entropy if they can be join by a
sequence of reversible adiabatic
transformation.

But real transformations are irreversible and
associated with a positive entropy production.



1B. Entropy of moist air

* Moist air can be treated as an ideal mixture of dry air,
water vapor and liquid water. The entropy per unit
mass of dry air S is then:

S=s8,+7rs, +1,5,

With  S: entropy per unit mass of dry air;
r. mixing ratio (water vapor concentration)
r;: mixing ratio for condensed water
r-=r+r;: mixing ratio for total water
S, S,-S;: specific entropy for dry air, water vapor

and liquid water



The specific entropies are defined up to an additive constant:

T
s, =C,,In—-R, Infe 4 540

o o

T e
s,=C,,In—-R, lne— +5,,

o o

T
s, =C, ln?+ S0

4

We cannot put all the integration constant to O because the
entropy of water vapor and liquid water must be such that:

L :
s, =S = ?V at saturation (e =e (1) or H =1)

‘Moist entropy S™: set s, =s,,=0

—S§=(C,+7CIn—+ R, InPe 4 r(LV ~R, lnH)
1, Po r




A brief note on adiabatic invariants:

« The thermodynamic properties of dry air can be
described by 2 state variables, say entropy and
pressure. As pressure is not invariant, any adiabatic
invariant is function of entropy alone.

dF(S)

dt

 For moist air, we need at least three state variables,
e.g. entropy, total water concentration, and pressure.
Any function of entropy and total water content is an
adiabatic invariant:

= 0 for reversible adiabatic transformations.

dF (S,r;)
dt

= 0 for reversible adiabatic transformations.
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2. |ldealized heat engine

out

) Tout
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» ldealized problem: convection transport water vapor and energy
upward from a warm/moist source to a dry/cold sink.

« Situation is analogous to shallow, non-precipitating convection.




2a. Carnot cycle

1 — 2: 1sothermal expansion at 7,
2 — 3: adiabtic expansion with S, = S,
3 — 4 : isothermal compression at T

out

Total water content is constant through

the entire cycle!

4 —1: adiabatic compression with S, = §,
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* Mechanical work is defined as
W = gﬁ—a(S,rT,p)dp
* Using the thermodynamic relationship
1dS = dh - adp

we get:
J W =TdS =(T, - T,,)AS

out

« External heating
80 = dh - adp = TdS
 Heating at the warm source:
0, =60 = [TdS=T,AS
|

Efficieny 1, =+ = L~ o

Qin T;n




2B. Steam cycle

1 —2: isothermal moistening at T, T 1 2

2 — 3: adiabtic expansion

3 — 4 : isothermal drying at T

out

4 —1: adiabatic compression

Heating is due solely to

evaporation!

dry 4
descent k\\_
>
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mOIS \
ascent
(J < > T
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170 <iar Ar,




The expression

1dS = dh - adp

is only valid for close transformations.

To account for the addition or removal of mass, we
need an additional term:

1dS = dh — odp - gdr,

where g is the Gibbs free energy of water vapor per unit
of mass:
g=h-Ts

T
=C (T-T,-In—+ RTInH
I

~RTInH



Mechanical work:

W =¢TdS+gﬁgdr

= (]—;n OMt)AS + (gm B gout )Ar
with
g' = RvT;n lnH
gout = Rv]-'out lnH

Surface heating:

0, =T,AS + g, Ar, = LAr,

Entropy change:  AS =| £ ;g"’”‘ )ArT
.. 1. -1 R T H.
0 T L




. T -T. | |RT, . H, additional term
een (g g e
Carnot
efficiency

The efficiency depends on the state of the system!!!
Saturated case: H=1

Efficieny 17,, ., =~ = 2~ Lou

Qin T;n
General case: the relative humidity increases with
height, i.e

Zn B Tout
I,

Hout = Hin — TIH =

Hence, a steam cycle produces at best as much
mechanical work as a Carnot cycle



* Three regimes:
— The cycle is unsaturated at all time: efficiency is minimum.

— The cycle is partially saturated: efficiency increases with
amount of water in the cycle.

— The cycle is saturated at all time: efficiency is maximum and
given by the Carnot efficiency

~0.161m,

Unsaturated Partially Fully
cycle saturated saturated



2C. There is no free lunch...

* |ts rate of change is given by
dg = sdT + adp

* For areversible isothermal process, we have:
dg—-oadp =0

= Ag+ W =0

« The amount of work that can be extracted is
equal to the reduction in free energy!

* And it is only possible to increase the free
energy if work is exerted on the system




“water vapor transport

penalty” due to an increase
in the free energy as water 8 out
Is transported upward

’ ( t ) Tout
(gv,in - gv,out)pOW,rT Fv j
v \V
g =RTInH L ﬁ J
&

Free energy increase with S B T,
height in an unsaturated
ascent 8in

Bur is constant whenever
the air is saturated



2d. Mixed Carnot-steam cycle

1 — 2: isothermal heating T . 5
and moistening at T}, 4 < AT
2 — 3 adiabtic expansion E E
3 — 4 : i1sothermal cooling E E
and drying at T 1Y >'\'é
4 — 1: adiabatic compression

* Intermediary steps 5 and 6 such that
cycle 1-5-6-4 is a humidifier and 5-2-3-6
is a Carnot cycle.



 Latent and sensible heat flux:

Qlat = LArT
Qsen = ZnAS + (gln - L)ArT
« Bowen ratio: 0
B —_ sen
Qlat
B 1
Efficien =—N +—
a 1+ B e 1+ B i
T -T 1 RT H.
—_ in out + v out ln in
]-ltl’l 1 + B L HOMt

The efficiency of an atmospheric heat engine
depends on both its degree of saturation and on
the Bowen ratio.
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3A. Equation of state for moist air

« Equation of state relates various

thermodynamic properties (l.e state variable)
of a fluid.

* We are particularly interested in expressed
properties like specific volume in terms of
adiabatic invariants and pressure.

* Moist air is treated as a mixture of dry air,
water vapor and condensed water. Water
vapor and dry air are treated as ideal gases.
Liquid water is treated as incompressible and
its volume is neglected.



Specific volume:

« We start from the ideal gas law

PV =(N,+N,)RT
= (Ndmd)£T+ (Nvmv)&T
m . " mv
 Then, after some reorgénlzatlon, we get:

T
Lrrse" r|L
l1+r, l+r, "|P

1+ %% r)RdT _R[T,
l+r P P
* At the end, we can express the specific volume as a
(smooth) function of four state variables, i.e.:

o=o(p,R,r,r.)

o=

=




Thermodynamic equilibrium

« Condensed water can only be present if
it is in thermodynamics equilibrium with
water. |.e we have

eithere<e (T) andr, =0  (unsaturated air)

ore=e(T)andr, =0 (saturated air)

e . partial pressure of water vapor
e, . saturation vapor pressure

T : Temperature

g, . concentration of condesate water



Phase transition and partial derivatives

* Thermodynamic equilibrium introduces a
switch condition in the description of the state
of moist air:

0 forr. <r(T,p)
r.—r(T,p) ftorr, <r(T,p)

h

* This implies a discontinuity in the partial
derivatives of the equation of state:

( or, {O forr, =r(T,p)
or; T

1 forr. >r(T,p)
* This applies not only to liquid water content,
but to almost all states variables.
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3B. Boussinesq Approximation

« Start with the compressible N-S equation

du =—aVp-gk-vW’u
dt

ég—aV'u=O

dt

« Assume an isentropic reference state
« Expand for small perturbation in pressure and
density:

éz=—XU%+Bk—VV%4

dt
Veu=0



Variations of density only enter through the buoyancy term in
the vertical momentum equation:

a(Xl 'Xn ’pref (Z)) - aref (Z)

B=B(X,..X,,2)=g
aref(z)

where the specific volume a

a=o(X,.X, ,p)

IS a non-linear function of the pressure p and other state
variables X,...X,,

The simplest choice is then to choose X,...X, to be
adiabatic invariants:

dX.
dt

=kV°X,



What about the adiabatic
iInvariants?

* We use the entropy S and the total
water concentration g, as adiabatic
invariants:

— =S+kV2S
dt

dqr

dt

* The buoyancy is a non-linear function of
the two invariants:

. 9
=qr +KVqr.

a(S,97,Pref(2)) — Qref(2)

B(S,qr,z)=g¢g e} )



Piece-wise linear equation of state:

Linearize the equation of state within the
saturated and unsaturated regions:

9B _ 9 (9o Bs. lfqrzqaz(” )
gS ] _ax,.(_»f a8 2 Bgs s if gr > gsat(5,2)

(1'1'.-‘;

(ﬁ) sl ( Jo ) = { By if 47 < gsat(S.2)
OQT S,z Cref C)QT S.p B‘?%S if qr > q:s'at(S- :)-

Introduce two new variables, the ‘dry’ and
‘moist’ buoyancies D and M:

D=Bg (S5 —Sref)+Bgr w97 — T res)
J[=BQ\( ,(f)+Bq, ((IT QTrcf)



saturated 4
| , % saturation
""""""""""""""""" / Ine
4
7
7’
...................... /
7’
7
”
7’
....... . s
. . unsaturated
/ .
7’
7’
T S
7’ D
1, NSz, M 0
oB dB
* For unsaturated parcels, —_ =1 and | - =0,
aD Nr oM D |

«  While for saturated parcels, 33) JdB ) 1
M.z D.z

=() and (W



 We still need a condition for saturation:
M-D=-N’z

* The full system is then

du , ,
— ==Vp 4+ Bk+4vrV-u

dt
V-u=10
dl) : f
o =D+xkV*D
dt
d . a
l — “]+'|°V-.‘[
dt

\B(D, M, z) = max(M, D — N22)|




LB(D, M, z) = max(M, D — N22)|

B(z)
Buoyancy in
—  a saturated
adiabatic
//” ascent
Buoyancy in a B=M
unsaturated
adiabatic
ascent
B=D-N’;
>

Buoyancy



LB(D, M, z) = max(M, D — N22)|

B(z)
yi
Z =z,
B(D,,M,,z)
Adiabatic ascent -
Parcel becomes
saturated at z =z, .

Buoyancy



Moist Rayleigh-Benard convection

u My Dy
Cloud layer
D(z) - Nz Subcloud layer
unsaturated
0 >
My Dy M,D

Analog to the classic Rayleigh-Benard convection
but now, both the ‘dry’ and ‘moist’ buoyancyes D and M
must be specified at the upper and lower boundary



5 non-dimensional parameters

du* B g
=—V. . I;o ,‘I..l)..:.‘ .t "' v2 ®
dt* N ( k \¢ Ru.\! h
V.-u =0
’'»
(11) ‘ 1 VSD'.+ 1?“1) u
dt* Vv PrRajg Ray -
M’ 1

e — e VM'* +u’
dt* VPrRay :

3 Parameters in the equations
= Dry Rayleigh number RCLD
= Moist Rayleigh number Ra ps
« Prandtl number T

And 2 are hidden in the buoyancy term:

B* = max (M’*,D’* +SSD + (1 _Rap ) z* — CSAz*)
Rap




Five-dimensional parameter space

Do — Dy)H?3 Moy — My)H3
Rap — (Do H) RaM:( 0 H)
VK

“Dry Rayleigh number” Ra 4

VK

“Moist Rayleigh number”

v
Rap P'r —
> K

“Prandtl number”
Py

CSA

NEH SSD SSD — DO_MO
CSA:MO—MH My — My
“Condensation in Saturated Ascent” Surface Saturation

Deficit”



2 Limiting cases:

Unsaturated atmosphere: if the whole atmosphere
IS unsaturated - i.e when

M,-D,-N’H<0and M, -D, —-N’H =<0

This problem is equivalent to the Rayleigh-Benard
problem with Ra = Ra,, and Pr =Pr

Saturated atmosphere: if the whole atmosphere
IS unsaturated - i.e when

M,-D,z0and M, -D, =0
This problem is equivalent to the Rayleigh-Benard
problem with Ra = Ra,, and Pr =Pr




Atmospheric moist convection

Dy — D) HE Mo — Mz )H?
RG,DZ( 0~ Dx) Ra,Mz( e i) Pr=0.7
VK VK
}20,]\4A
Rap
>
“Pr
CSA
SSD
N2H Biy—
— g SSD —
R T Mo — My




Case 1: ,stratocumulus regime”

Rap >0 (= const.) Rapy >0 (= const.) Pr=0.7

RCLM i

RaD
p ~Pr
CSA .~
SSD
Doy — M,
CSA = const. My — Mn




Buoyancy flux and cloud base

"Clouds- gi~M—-D+ N2z2>0

"Cloud base"

M—-D+N2z=0




Buoyancy flux and cloud base

In Boussinesq system, generation e |
of kinetic energy is given by the e — S
Integral of buoyancy flux: "

0.8/
J.KE = fW_BdZ -D Enhanced

0.6l buoyancy flux
In classic Rayleigh-Benard I
convection, we have -

&tﬁ + aZ@ = K&ZZE
i 0.2 dry —
so that the buoyancy flux is
constant with height R
13 005 . 0.1 0.15

But it is not the case for
stratiform convection



Buoyancy flux and cloud base

B =max(M,D-N?z) (notan adiabatic invariant anymore!)

-~ v
N R —

&tl_)+ dzw_D=1<&ZZ5 o *‘
&tﬂ +0d wM = K&ZZM
0.6
In unsaturated regions: R
wB =wD 0.2| j
A
In saturated regions: D A— = T
wB = wM e

Cloud base of stratocumulus and
water deficit increase



Mixing line

* Over long time-scale, the solution
collapse toward a mixing line, l.e. the
dry and moist buoyancy can be
expressed as a function of a mixing

fraction
M=xM,+1-x)M,

D=xD, +(1-x)D,






10

= 7
| RaM—1.9x1O
- 8
3 . Ra. =1.9x10
10 1 . : M
10°°
I_\(\l
10~
1071
exp(-0.51 tfrf) exp(—O.23t/Tf)
0 10 20 30 40 50 60

t/Tf

 However, rate of collapse decrease with
Rayleigh number



10' |

10" ;
107t/
10 _Ra =1.9x10’
ﬂa,, 9x10
10™ :
0 0.2 0.4 0.6 0.8 1
L

» But the steady state distribution
depends also on the Rayleigh number



F(z)

1 0.1
(a) (D)
0.8/ o.oa}
0.6 o.osjf
0.4 .1 0.04 .
Ra”=l.1x10 Ra“=1.9x10)
0.2 Ra =1.1x10" | 0.02! Ra, =1.9x10
R.E!H=1.1:<1O8 RaM=1.9x108
0 0!
0 0.5 1 0 0.5
z/H z/H

* Which has direct impact on the
cloudbase/cloud fraction



Case 2: stratocumulus to cumulus

Do — D) H3 Mo — M) H3
RG,DZ( 0 — D) Ra,Mz( 0 a) Pr=0.7
VK VK

}20,]\4A

Rap

CSA

SSD

N2H Dy — M,
— g SSD —
R T My — My




Changing cloud fraction

Rap >0 (= const.)

CSA

RaM -

(Mo — Mg)H?

VK

R(J,]WA

CSA =

N2H

My — My

Variation of M,; and thus of CSA and Ra,,

P =01



JStratocumulus” to ,,Cumulus®

CSA=0.35

Transition to ,,Cumulus” 03
Cloud layer breaks up and disappears 08




Case 3: Conditional instability

Dy — Dg)H?3 My — Myg)H3
Ry S20— 0] Ry = 0 — Vi) Pr=0.7
VK VK
}20,]\4A
Rap
>
T PP
CSA
SSD
N?H Dy — M,
A: = SSD:
€ MO_MH MO_MH




Conditional instability

Do — Dg)H3 My — Mg)H?3
iy D) g A0 ")
VK VK
}20,]\4A
Rap
>
p T PP
CSA .~ \‘
\ iS58 D
SSD =0

CSA >0 (= const.)

P =01



Conditional instability

Do — Dy)H?3 Moy — My)H3
RCLDI( ° #) RaM:( E #)
VK VK

Stable Rays
stratification for
unsaturated R a, <0
parcels

Ra,, >0 -~
But unstable >
stratification for
saturated parcels

) “Pr
CSA .~ \‘
. SSD

CSA >0 (= const.) SSD =0

P =01



Conditional instability

Do — Dy)H?3 Moy — My)H3
RCLDI( ° #) RaM:( E #)
VK VK

Stable Rays
stratification for
unsaturated R a, <0
parcels

Ra,, >0 -~
But unstable >
stratification for
saturated parcels

) “Pr
CSA .~ \‘
. SSD

CSA >0 (= const.) SSD =0

P =01



LB(D, M, z) = max(M,D — Nfd
Mean buoyancy profiIeE(Z)

Buoyancy in
—  a saturated
adiabatic
ascent
Buoyancy in a b=M
unsaturated
adiabatic
ascent
B=D-N’;
>

Buoyancy
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10
= ' .;"' And
ui* convection
becomes
inceasingly
Intermittent

at high Ra.

5 7-_‘—“_-'-—-1 ; \%\_
w .

Ra, =3734200

0 0.5 1 1.5 2 2.5



(1)

n

Ekn'rl‘t)

{t)

10

10~

10

10~

10"

107

0.5 1
time scale viU/H®
I's7
0.5 1 1.5
time scale vt/H*
I'=9
0.5 1 15
time scale vt/H®
r=12
05 1 1.5

time scale vi/H°

(1)

Kin

I'=6

0 05 1 1.5
time scale vi/H*
I'=8
\ "|‘1 S
\ Ii
|
|
0 05 1 15
time scale vt/H*
I'=10
0 05 4 1.5
time scale vt/H®
I'=16
0 05 1 1.5

>
time scale vi/H°

Simulations evolve

toward a localized
turbulent patch at
high aspect ratio




Conclusion

Atmosphere can be viewed as a heat engine that
generates kinetic energy by transporting energy
from warm to cold.

Relative humidity is a key factor in determining how
much work is produced by atmospheric circulation.
This can be captured by a simple steam cycle.

This behavior is related to the non-linear state
equation associated with the different behavior
between staurated and unsaturated air.

A simplified piecewise linear equation of state can
capture the main effect of phase transition on
dynamics, and use to simulat idealized moist
convection.



 Latent and sensible heat flux:

Qlat = LArT
Qsen = T;nAS + (gm - L)ArT
« Bowen ratio: 0
B —_ sen
Qlat
B 1
Efficien =—N +—
a 1+ B e 1+ B i
T -T 1 RT H.
—_ in out + v out ln in
]-ltl’l 1 + B L HOMt

The efficiency of a mixed cycle depends on both
relative humidity and Bowen ratio.
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ll. Buoyancy flux

* We consider now a convective layer.
The generation of kinetic energy is given
by the vertical integral of the buoyancy
flux:

e fpow'B'dz

* B is the buoyancy

- ao (Z)

a
B(S,r;,2)=G P
o, (2)




A. Stratocumulus convection
 Linearize the buoyancy flux

/
!
PoW Iy
S.p

'/ /&B) o/
PpwB =|—| p,wS +
\0')5 't sP

or;

* The partial derivatives can be rewritten
using the Maxwell relationships:

oB o JdT JoT
%), %) %) %),
a5/, , a5/, , op S 2 ) s




 After integration:

dKE
dt

j% p,W'B'dz

0

(T;n — Eut)pOW,S’

=

Work done by
a Carnot cycle

N,

GAzp,w'r,

“water vapor
penalty”

i

Work done by
a mixed cycle

~_~

geopotential
energy gained
by water
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Outline

Introduction: the nature of the problem...
Entropy of moist air

Heat engines and water vapor.

Equation of state of moist air

 |dealized moist Rayleigh-Benard convection
=»Mixing in stratocumulus

« Buoyancy and entropy fluxes

* |sentropic circulation



Cold and dry

Warm & moist
L» -J >

height
height

o X(2) wX'(z)
Adiabatic invariants (e.g. entropy, total water, equivalent

potential temperature, M and D...) are well-mixed.
And their flux is constant.



For non-invariants (e.g. liquid water, temperature, buoyancy)

A\ A

>

height
height

L»
)_((Z) Y (2)

Y (2)= F(X,(2),X,(2),p(2))

=» The vertical derivative changes
abruptly at the cloud base



For non-invariants (e.g. liquid water, temperature, buoyancy)

heigh
elgj
heigh
eight g
|
),

=» The vertical flux is discontinuous at cloud base!



Excess evaporation at cloud top

Excess condensation
at cloud base

height
height
|
W,

N

Condensation - evaporation w'Y'(2)

Excess condensation at cloud base acts as a source
(or sink) for non-conserved quantities (liquid water,
buoyancy, etc...)



What are your favorite
invariants?



| understand it...

It makes it easy to compute buoyancy or
density (e.g. M and D)

It can be measured

It can be conserved under specific diabatic
transformation

| can easily write its tendency equation under
general (non-conservative) conditions



. Buoyancy depends on
| location of cloud base

TI[—] A % o005 _ o1 0.15
{ NZ)

Efficiency of steam
cycle depends on

~0.161, relative humidity
>
. .H 0ut<=1: gn =.1 . rT,in
Unsaturated

cycle



Buoyancy flux

* In the Boussinesq approximation, the
generation of kinetic energy is given by
the vertical integral of the buoyancy flux:

ek fpow'B'dz

* B is the buoyancy

B(S,r.,z) =G a(S,r,py(2)) —a,(z)
o ay(2)

= Gpy (D[ a(S.77,14(2)) = y(2)]




* Linearize the buoyancy flux

oB

or;

/
!
PoW Iy
S.p

B
p,W'B’ E(Z—S) P WS +
TP

with
B(S.1;,2) = Gp, ()| a(S.r;,py(2)) — ay(2) ]

* The partial derivatives can be rewritten as

0B Jdo G (oda
5] o) -5
oS e oS o 1+ r.,\JS e

oB oo G (Jda G
i — ,O()G(_) _ IOO ( d) _
S.p rr .S

o), or; 1+ Yro \ OD 1+,

o

a, = : specific volume per unit mass of DRY AIR

1+ 7,




* Maxwell relationships:
1dS = dH — o, dp — gdr

oH oH oH
oa,=|—| ,T=|— and g = —
p)s, S/, ).,

da, 0°H oT
E ( ) )p _(é’Sé’p)rT _( )S’r

— ory ) s \drdp) — \dp),




* Maxwell relationships:

(@) _ PG (&O‘) __PG [T
S )y 1+10\0S), , 1+rg\0p),

= ! Fad
l+r,
dB)  pG (da, G
)., l+r,\ dp .S 1+ r,
_ PG (g 1 G
I+ ro\dp), o 1+7

_ 1 (c?g) L G

I+ 1 [\02/,, s




B-—Ll 1 s 1l@+44
1+~ 1+~

=H=%yl@+4%
dz

§": Total entropy perturbation per unit mass of dry air

!

S"= " : Total entropy perturbation per unit mass of moist air
+ 7
qT’ =7 T Specific humidity perturbation (and not mixing ratio...)
+ 75
d
wB' =T _w'S"- 28 4 Glw qT
dz




 After integration:

dKE ‘& __
—=fp0dez
dt

= (T;n — ];ut)pOW,S,, + [gv,in - gv,out)pOW,QT ] GAZPOW,qT

- - ~_=

Work done by “water vapor geopotent@al
a Carnot cycle penalty’ energy gained

\ / by water

Work done by
a mixed Carnot-steam cycle
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Global considerations

i




 However, Columbus did not sail directly west
from Spain. Rather, he went South to the

Canaries islands.

* The prevailing winds in the Canaries blow
from the East. This is what Columbus needed

In order to sail West.
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| think that the causes of the General Trade-

Winds have not been fully explained by those
who have wrote on the subject

George Hadley (1735)



George Hadley (1735)

« Hadley explanation for
the Trade winds:

— There is a global
circulation, with air rising
at the Equator, and |
subsiding over the Poles

— Conservation of (angular)
momentum implies that
air moving toward the
equator acquires a
easterly component.




Clouds and the Hadley circulation




Ferrel (1836)

* Ferrel was the first
to identify the role of
rotation in
atmospheric motions
(the Coriolis effect).

* Also, using Maury’s
data, he identifies a
reverse circulation
associated with the
westerly winds in the
midlatitudes.




Bjerknes (1921)
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« Midlatitudes are however dominated by
storms (aka ‘synoptic scale eddies’).

* Understanding the interplay between the
storm and global circulation is a key issue Iin

modern meteorology.
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The general circulation of the
atmosphere

The Earth’s atmosphere
receives most of its energy
at the surface and in the
Tropics.

But it emits infra-red
radiation rather uniformly.

The circulation acts to
transport energy from
equator to Pole.

Other important constraint
related to angular latitude
momentum balance.




Eulerian averaging

Temperature (K) Zonal wind (m/s)

,140
#s

-, Pressure(mb), . .

atitude latitude
« Eulerian averaging: take the time and zonal average at

fixed latitude and pressure (or height)
T 2w

F(g.p) = - f f F(A@.p.t)dAdt



Pressure(mb)

Eulerian mean circulation

meridional wind (m/s)
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The circulation can be dlagnosed by computing the stream
function:

W(p,p) = f2m/acosq0
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Hadley cells

o AR QP
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58
Equator Polar cell

 Eulerian-mean circulation exhibits the ‘classic
three-cell structure.

 But the Ferrel cell is a reverse circulation that
transports energy toward the equator.

Polar CeII



Circulation in isentropic coordinates
(Dutton, Johnson, Held and Schneider)

* Rather than averaging in eulerian coordinates, one
can average the circulation at constant value of the

potential temperature 6:
T 2w

— 1
Fl(0,0)=—— | | F(A,0,0,t)dAdt
@.0)=5— f f RXR)
0
W (¢,0) = f2np8v6acoscpd6
0

* Motivation: the potential temperature is related to
entropy and is conserved for reversible adiabatic
transpormation in the absence of phase transition.



Stream function on potential
temperature surfaces 368
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The three cell structure disappears: there is a single Equator-to-
Pole cell in each hemisphere.

The circulation is direct (high entropy air flows poleward, low
entropy air flow equatorward).



Why the circulation in eulerian and isentropic
coordinates are in the opposite direction?

X

v <0

longitude
—

 In the midlatitudes, the flow is highly turbulent: the
meridional velocity alternates between poleward and
equatorward at all levels.



In the stormtracks:
Eulerian-mean circulation

v? <0 at low pressure

— — — — |sobaric surface

v” >0 at high pressure

longitude
—>

 In the midlatitudes, the flow is highly turbulent: the
meridional velocity alternates between poleward and
equatorward at all levels.

* This idealized eddies is associated with a poleward flow at
high pressure/low level, and equatorward flow at high level




In the stormtracks:
Isentropic circulation

p,v >0 at high 6

Potential temperature
~~ surface

p,v <0 at low 6

longitude
Cold Warm -

Thickness variations are such that the upper
iIsentropic layer encompass larger fraction of the
poleward flow.

Such pattern also corresponds to a net poleward
energy mass transport.



Isentropic flow and eddy mass transport

p,v >0 at high 6

Potential temperature
~~ surface

p,v <0 at low 6

longitude
—>

* The mass flux on isentropic surfaces can be written as:

—0 —0 —6 , '9
/PQV B ’O} V.tV ~——Eddy transport

Total mass flux Transport by mean circulation

 The mass transport by the eddies is in the opposite
direction to the mean wind.



(‘ > O d S ___— Parcel

trajectories

/\ (eulerian) mean
k W}/l)/ veIOC|ty

Equator Midlatitudes Pole

« The potential temperature is more or less conserved,
and the the circulation on isentropes do a better job

at capturing the mean lagrangian trajectories of air
parcels.

* In the midlatitudes, the parcels move on average in
the opposite direction to the (eulerian) mean velocity.



What about moisture?

How to define an isentropic surface in a moist
atmosphere?

Previous studies have used the potential
temperature 6 as definition of entropy.

The equivalent potential temperature 0, is
conserved for reversible adiabatic
transformation, even when phase transition
take place.

Why not use 0, then?
Does it matter?
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Pressure(mb)

'Dry isentropes": 6, = cst 'Moist 1sentropes’: 6, = cst
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 Different definitions imply different isentropic
surfaces.

* 0, includes a contribution from the latent heat

content, and has often a minimum in the
middle of the atmosphere.




Stream function on dry isentropes Stream function on moist isentropes

300 368 Stream fucntion for moist entropy - annual mea
b |

latitude latitude

* Same single cell structure...
« But amplitude of the circulation differs!
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Mass transport In the Tropics:
On moist is

Transport on dry
Isentropes is larger

Mass transport _
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Why the difference in mass transport?

Both 0, and 0, are
conserved along adiabatic
trajectories. Rather than
isentropic surfaces, we can

think of having a set of
‘isentropic filaments’ -i.e.

0

€

lines of constant value for
both 6, and 0,.

The poleward mass
transport along such
isentropic filaments is
defined as:
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In the Midlatitudes:

Stream fucntion for liquid water entropy - DUJF Stream fucntion on moist isentropes - DJF
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 Circulation on moist isentropes is larger
than that on dry isentropes.



Mass flux distribution at 40N - D
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Mass flux and stream function at 40N

Stream function on Stream function on
dry isentropes: moist isentropes:
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0

Portion of the
mass
transport
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the circulation
on

- moist

| °* isentropes
but not to that
on dry
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The additional mass transport on moist isentropes takes place
filaments near the Earth’s surface.

The equivalent potential temperature corresponds to upper
tropospheric value of the potential temperature.

This corresponds to a poleward flow of warm, moist air near the surface
that is ready to rise into the upper troposphere.



Why the circulation on moist isentropes is
larger?

Dry isentrope

/

longitude
—>




In the stormtracks:
Circulation on moist isentropes

Dry isentrope

/

4

/= — Moist isentrope

—-— : longitude
Moist air moving —

poleward
* Moist isentropes found in the upper
troposphere also intersects the Earth's
surface.

« Such situation corresponds to a poleward
flow of warm, moist air near the surface.
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« Circulation on dry isentropes is larger than
circulation on moist isentropes.
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Mass flux distribution at 10N - C

Mass transport at 10N - DJF
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Pressure(mb)

~_ Dryisentropes ~ Moist isentropes
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* In the equatorial regions, the potential temperature
increases uniformly with height, but not the
equivalent potential temperature.

40N

« The equivalent potenital temperature in equatorward

and poleward flows of the Hadley cell are close to
each other.
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Quadrant I:
Upper
tropospheric
flow

Quadrant II:
Low level
warm moist
air
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N —— (Circulation on
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— ‘Moist’ branch:

> _/) additional mass
/(W< flow on moist
Isentropes

Equator Midlatitude stormtracks Pole

* The global circulation has two poleward

components in the midlatitudes:
— an upper tropospheric branch of high 6.-6;;

— an a lower branch of warm, most air with high 0,-
low 6,, which ascent into the upper troposphere
within the stormtracks.

Mass transport is comparable in each branch.



Entropy transport (JK-1 s-1)
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Annual mean
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Gross
Stratification:
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* |n the tropics:

AB, << AD,

* Vertical stratification of
humidity (qu IS IN
opposite direction to that
for potential temperature

0.0




In the midlatitudes: AHe ~ AH!

In order to have enhanced
mass transport but same
stratification, the additional
mass transport must take
place at 6, corresponding to
lower tropospheric value,
but 6, corresponding to
upper troposphere.

It implies that horizontal
variations of 6, ( and of
water vapor ) are
comparable to its vertical
variations.
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Conclusions

Heat engine and buoyancy flux computations yields the
same answer.

Entropy and buoyancy are closely tied:
/ /"
\B'«T,S"l

‘Global mean circulation’ depends on the coordinate
system - its is true also for any ‘isentropic’ circulation.

In the midlatitudes, the mass transport on moist isentropes
Is approximately twice as large as that on dry isentropes.

The additional mass transport corresponds to a low-level,
poleward flow of warm, moist air that ascends into the
upper troposphere within the stormtracks.
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