Turbulence and warm rain formation in clouds

Szymon P. Malinowski

University of Warsaw,
Institute of Geophysics

International School
Fluctuations and Turbulence in the Microphysics and Dynamics of Clouds
Porquerolles, Sep. 2-10, 2010



Draft of contents

Clouds and Turbulence — overview.

Cloud topped boundary layer:
— turbulence in Stratocumulus clouds:
— turbulence in cumulus convection.

Condensation in convective motions.

a) a sketch of Koehler's theory;

b) availability of water substance for process
condensation and droplet growth;

c) collisions and coalescence and a ,bottleneck
problem.

Experimental evidence of warm rain formation
a) drizzle in Stratocumulus;
b) warm rain in cumulus clouds;
- similarities and differences.



Cloud-scale and small-scale turbulence

Entrainment and mixing:
Cumulus
Stratocumulus
Mechanisms for entrainment in clouds

Turbulence and cloud microphysics: droplet size distribution

Condensational growth and turbulence

Collisions, coalescence and turbulence
Droplet relative velocity
Droplet clustering (preferential concentration)
Preferential sweeping

The effect of entrainment on the droplet size distribution
Homogeneous and inhomogeneous mixing



Clouds and Turbulence — overview.

Cloud topped boundary layer:
— turbulence in Stratocumulus clouds:
— turbulence in cumulus convection.

Condensation in convective motions.

a) a sketch of Koehler's theory;

b) availability of water substance for process
condensation and droplet growth;

c) collisions and coalescence and a ,bottleneck”
problem.

Experimental evidence of warm rain formation
a) drizzle in Stratocumulus;
b) warm rain in cumulus clouds;
- similarities and differences.



What is turbulence?

turbulence —

1. Irregular fluctuations occurring in fluid motions. It is characteristic of
turbulence that the fluctuations occur in all three velocity components and are
unpredictable in detail; however, statistically distinct properties of the turbulence
can be identified and profitably analyzed. Turbulence exhibits a broad range of
spatial and temporal scales resulting in efficient mixing of fluid properties.

2. Random and continuously changing air motions that are superposed on the
mean motion of the air.

Glossary of Meteorology, American Meteorological Society

turbulence — In fluid mechanics, a flow condition (see turbulent flow) in which
local speed and pressure change unpredictably as an average flow is
maintained.

atmospheric turbulence — small-scale, irregular air motions characterized by
winds that vary in speed and direction. Turbulence is important because it mixes
and churns the atmosphere and causes water vapour, smoke, and other
substances, as well as energy, to become distributed both vertically and
horizontally.

Britannica Online



Kelvin-Helmholtz instability with Ri=.038, Re=5000

The Reynolds number 1s the ratio of inertia and friction,
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Dominant shear instability with Ri=-0.038,
Ra=3400000, Re=3600



Dominant convective instability with Ri=-1.34,
Ra=31000000, Re=1800



What is cloud?

Cloud — A visible aggregate of minute water droplets and/or ice particles in
the atmosphere above the earth’s surface

Glossary of Meteorology, American Meteorological Society
Cloud — any visible mass of water droplets, or ice crystals, or a mixture of
both that is suspended in the air, usually at a considerable height
Britannica Online
What is the typical size of aerosol and cloud particles ?

From a few nanometers: a few molecules condensed
To a few centimeters: hailstones

Measurable parameters from in-situ observations

Particle size...................... MM, mm,cm............ 1um<D<10cm
Number Concentration........ cm> 1t mB 1000cm™><N<1m™
Extinction Coefficient.......... Km™ o, 100km™"'<B<0.01 km

Water Content................... gim®. 10g/m°<W<0.0001g/m°



PRESSURE, hPa

Cloud formation processes:

Condensation of water vapour into small

droplets

adiabatic expansion (e.g. ascending mé/’/t/ions);

_—

_—

isobaric cooling (radiative, conductive);

Isobaric mixing.
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Examples of
condensation
(formation of
clouds) due to
adiabatic
expansion.






Examples of condensation
(formation of clouds)

due to isobaric mixing of
two humid unsaturated
airmasses.
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Figure 4 Cartoon of well-mixed, nonprecipitating, stratocumulus layer, overlaid
with data from research flight 1 of DYCOMS-IIL. Plotted are the full range, middle
quartile, and mean of 6,, ¢,, and g, from all the data over the target region binned in 30-
m intervals. Heights of cloud base and top are indicated, as are mixed layer values and
values just above the top of the boundary layer of various thermodynamic quantities.
The adiabatic liquid water content is indicated by the dash-dot line.

Stevens, 2005
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Fi1G. C1. (upper six rows) Thumbnails of profile and (last row) time series statistics for the master ensemble.
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Figure 6 Cartoon of trade-wind boundary layer from large-eddy simulation. Heights
of cloud base, level of maximum 6, gradient (inversion height), and maximum cloud
penetration depth are indicated, as are subcloud layer and inversion-level values of
thermodynamic quantities. Cloud water contents are averaged over cloudy points only,
with adiabatic liquid water contents indicated by the dash-dot line. The far right panel
shows cloud fraction, which maximizes near cloud base at just over 5%.

Stevens, 2005









ENTRAINMENT
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REGION

TURBULENT WAKE

FIG. 14. Schematic model of a cumulus cloud showing a shedding
thermal that has ascended from cloud base. Continuous entrainment
into the surface of the thermal erodes the core, and the remaining
undiluted core region continues its ascent, leaving a turbulent wake
of mixed air behind it. See text for further discussion.

Blyth et al., 1988
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FiG, 17. Wind velocity (i) and liquid water content (ii) for three KA penetrations from 1625
to 1633 MDT in the 19 July 1981 cloud: (a) 472 mb, (b) 514 mb and {c¢) 527 mb. The wind
vectors are formed from the vertical wind and the wind along the flight path and are drawn
to scale, o .
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Siebert, Lehmann and Wendisch, 2006.



The following parameters characterise warm turbulent clouds and give
some indication of their variability.

Mean turbulent kinetic energy dissipation rates, €, can vary from
approximately 10 cm?®s™ in stratiform clouds to 20010 cm“s™ in cumulus
clouds (e.g. Caughey et al., 1982; MacPherson and Isaac, 1977).

The Taylor-scale Reynolds number, R, , varies from approximately 5000 in

stratiform clouds to 20,000 in strong deep convective clouds (e.g. Shaw,
2003; Khain et al., 2007); recent measurements show that € ~ 3 cm*s™ and
R, ~ 5000 for stratocumulus (Siebert et al., 2010) and € = 20 - 30 cm’s™

and RA ~ 3 - 4 x 10* for small cumulus clouds (Siebert et al., 2006).

The maximum liquid water concentrations are observed in convective
clouds with very strong updraughts and are not larger than 4-5gm™ ;
values more typical of cumulus clouds vary from 0.1-1 g m™ depending on
the stage of development (Pruppacher and Klett, 1997, §2.1.3).

It should be noted that most estimates of cloud parameters come from a
limited number of measurements at low resolution; only recently (Siebert et

al., 2006; Siebert et al., 2010) have higher-resolution (~20cm)
measurements of turbulence in clouds been possible. Devenish et al., 2010
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What is rain?

rain — Precipitation in the form of liquid water drops that have diameters greater
than 0.5 mm, or, if widely scattered, the drops may be smaller.

The only other form of liquid precipitation, drizzle, is to be distinguished from
rain in that drizzle drops are generally less than 0.5 mm in diameter, are very
much more numerous, and reduce visibility much more than does light rain.

warm rain — Rain formed from a cloud having temperatures at all levels above
0°C (32°F), and resulting from the droplet coalescence process.

Glossary of Meteorology, American Meteorological Society

rain — Precipitation of liquid water drops with diameters greater than 0.5 mm
(0.02 inch). When the drops are smaller, the precipitation is usually called drizzle.
See also precipitation.

Britannica Online



Aerosol, cloud and rain droplets:

Large cloud droplet
d=100pum

Typical Condensation nucleus
d= 0.2 um

Typical Cloud droplet
d= 20 pum

ypical raindrop
= 2000 um = 2 mm

From: What about weather modification? By Chuck Doswell, http://www.flame.org/~cdoswell/wxmod/wxmod.html
After. McDonald, J.E., 1958: The physics of cloud modification. Adv. Geophys., 5, 223-303.
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Top row: series of events of the fragmentation of a d =6 mm water drop falling in an ascending stream of air.

The time interval between each image is At=4.7 ms. The sequence shows first the flattening of the drop into a
pancake shape, the inflation of a bag bordered by a thicker corrugated rim, its break-up and the destabilization of
the rim itself (highlighted in the inset), leading to disjointed drops distributed in size.

Middle row: a similar series defining the initial diameter d , the bag thickness h(t), its radius R(t) and shape x (r.t),

and the final drop size d. Bottom row: the formation of a bag is not mandatory for the initial drop to break up.
However, its fragmentation is always preceded by a change of topology into a ligament shape, which often occurs
without bag inflation. The sequence is for d,=6 mmand At=7.9 ms.

Emmanuel Villermaux & Benjamin Bossa, 2009



HOW droplets large
enough to start

A Concept of rain formation collision/coalescence
cascade may appear
) in clouds???
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Figure 3 Illustration of the evolution of a droplet size distribution during the
onset of the collision-coalescence process. Figure adapted from Berry & Reinhardt

(1974) and Lamb (2001}, courtesy of D. Lamb, Penn State University.
After Shaw, 2003.
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Cold cloud particles at various heights (temperatures) imaged by CPI (SPEC Inc.)



Concepts:

1. Giant Condensation nuclei

2. Entrainment and secondary activation

3. “Something to do with turbulence”
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Figure 3: Observations on many scales of a
precipitating small cumulus (17 January,
13:59 UTC). A: Satellite image from DMSP
recorded 10 minutes before penetration by
the Wyoming King Air. B: SPol radar image at
3.5¢ elevation; the cloud is about 46 km from
the radar. C: Photograph taken from a
position marked with the red dot in B. The
cross marks the approximate location of the
aircraft penetration at 2630 m altitude. D:
Vertical sections of radar reflectivity and of
Doppler velocity from the Wyoming Cloud
Radar and plots of the in situ updraft, liquid
water content and rain rate measurements.
Note that the high rain rates and large drops
are within the updraft. E: Millimeter sized
drops seen at two different magnifications
from imaging probes on the King Air. Also
shown in F/G are scanning electron
microscope images such as were made from
data collected on NSF/NCAR C130 sub-
cloud circles: 2 ym sea-salt particle collected
by the total aerosol sampler (F); giant sea-
salt particle (20 ym scale) collected with the
giant nuclei sampler (G). The location of the
Research Vessel Seward Johnson is marked
with a blue triangle in A.

Rauber et al., 2007



Courtesy H.Siebert
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SMALL-SCALE TURBULENT MIXING IN CLOUDS
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Fig. 3. Average measured values of mean
volume radius », for the 7 conditionally-
sampled Cu at each of 5 levels flown by the
aircraft (solid squares); horizontal lines
through the data indicate 2 standard devia-
tions of data variability (similar horizontal
lines in subsequent plots have the same
meaning). Dashed line is the expected
value of r, given adiabatic ascent in the Cu.

Fig. 1. Liquid water content LWC as a
function of height z in RICO trade-wind
Cu on C-130 flight RF12. Crosses are
1-hz PVM data, circles are 1000-hz PVM
data, and triangles are 1-hz 2D-C data.
The curve indicates the expected adia-
batic LWC profile given cloud-base tem-
perature and pressure.

Gerber et al., 2008
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Table 2. General characteristics of the seven Cu at five different levels shown in Fig. 2, with mean values of cloud
top z,, cloud top minus aircraft level z,, aircraft level minus z, = LCL ~ 570 m, width of the turret W,, length L, of
the aircraft pass through the turret, vertical velocity w, maximum vertical velocity w_. (w based on 4-m resolu-
tion data), bulk TKE dissipation rate £, and fractional entrainment §. s(xxx) indicates the mean of the sample
standard deviation s for all cloud passes at the given level, and s[xxx] indicates s for the mean of the parameter
xxx at the given level; the same convention is used in subsequent tables.

Level za_zu zr zr_za W 5 [m La w 5 (EU} w b [E] O S [ﬁl]

max E 2 F -
(m) (m) (m) (m) (m) (m) (m/s) (m/s) (m/s) (cm’/s") (em’/s) (1/m) (1/m)

1 202 1009 187 o544 162 331 1.18 791 2.40 14.01 6.7 2.29e-3  1.28e-3
2 439 1205 196 484 261 266 1.25 1.13 3.01 41.34 16.26 1.26e-3  .bde-3
3 615 1398 213 453 168 402 1.92 158 428 63.24 46.76 Jd3e-3  23e-3
4 918 1722 234 612 185 454 1.90 1.67  4.88 74.61 42.37 9le-3  .13e-3
5 1074 1920 276 631 187 407 -283  .869 1.29 29.00 32.90 6.12e-3 -

Table 3. Microphysics of the seven Cu at five different levels shown in Fig. 2, with mean values of LWC (liquid
water content) and its sample standard deviation for three horizontal data resolutions, total droplet concentra-
tion N, and mean volume radius »,. The latter two parameters correspond to 10-m resolution data. The subscript
a indicates expected adiabatic values.

Level LWCJE LWL; s (10 clrgn) s (b0 c;Ln] s (1000 Em) N s [V] - r, s (r)
(g/m’) (g/m’) (g/m’) (g/m’) (g/m’) (No/cc)  (No/ece)  (pm)  (pm)  (pm)

1 605 284 084 078 063 95 12 11.4 9.2 2.0

2 1.00 A27 142 136 128 97 22 13.5 10.6 3.1

3 1.42 020 160 153 145 112 20 15.2 10.2 1.7

4 2.11 036 196 184 173 116 11 17.3 10.6 2.4

) 246 331 142 135 125 o4 39 18.2 11.9 3.7

Gerber et al., 2008
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Figure 2. Results for the marine case of June 26. Figure 3. Results for the polluted case July 18.

The 1st, 2nd, 3rd, and 4th row shows the mean droplet concentration N, the mean radius r, the mean standard deviation s,
and the mean relative dispersion d, respectively, at different heights above the cloud base. Left, middle, and right columns
are for near-adiabatic (AF > 0.9), diluted (0.5 <AF <0.9) and strongly diluted (0.1 < AF < 0.5) cloud samples,
respectively. Horizontal lines represent one standard deviation around the mean value. The dashed line shows the mean
height of the cloud top.

Pawlowska, Grabowski and Brenquier, 2006
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FiG 3. (top right) Channel | (0.6 ym) reflectance over the northeast Pacific from
GOES-10 at 0730 LT (1430 UTC) for 11 Jul 2002. (top left) Zoomed image of
reflectance field from boxed region in regional image; overlaid on this image is
a flight segment from RF02 that spans the time of the overpass and from which
radar and lidar data is presented in top left panel. The zoomed image highlights
a tilde-shaped POC boxed in the image. (bottom) Time-height radar reflectivities
filled, with cloud top height as estimated by downward-looking lidar shown by
white line. Regions where lidar detects no cloud are shown by a lidar trace at the
surface. The time for which the satellite image is valid is indicated on the flight
tracks.
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Entrainment as a result of interfacial instabilities: Klaasen, Clark, Grabowski
Illustrations from Grabowski and Clark 1991. 1993
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Preferential concentration — enhanced local densities, more probable collisions?
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Figure 6 A slice through the computational domain of a direct numerical simulation
of homogeneous, isotropic turbulence containing particles. The gravitational accelera-
tion, particle Stokes number, kinetic energy dissipation rate, and Kolmogorov scales are
matched to those typically encountered in an atmospheric cloud. Given these scales,
the slice is 0.1 m on a side. The left panel shows vorticity contours, and the right
panel shows droplet positions, illustrating the tendency of droplets to form clusters in

regions of low vorticity. Figure adapted from Vaillancourt et al. (2002), courtesy of
P. Vaillancourt, Meteorological Service of Canada.

(Shaw, 2003)



Stokes law, (after Shaw, 2003):

Fundamental to understanding the influence of turbulence on cloud processes is the motion
of an individual cloud droplet. In many basic treatments of cloud processes, droplets are
assumed to move with a steady-state fall velocity V_, but this neglects the contribution of

fluid accelerations, which under some flow conditions are of the same order or larger than
the gravitational acceleration g. For small cloud droplets, the Reynolds number typically is
sufficiently small so that the Stokes drag force is a reasonable approximation. In this limit,
Newton’s second law for a sphere with velocity v in a viscous fluid with uniform (but time
varying) velocity u is:

dv 1 o g ta’) — (')
paVa— = 6mur(@—v)+ —p Vg (@ — V) + 6r"/mpru dt
iif 2 0 \/f — If

+ paVag+ prVa(i — g). (11)

Here, u and p,are the dynamic viscosity and density of the surrounding fluid (air), p  is the
density of the droplet (water), and V= 4/37 is the droplet volume. The terms on the right

are, in order, the Stokes drag force, the “added mass” force due to acceleration of the
surrounding fluid, the Basset “history” force due to diffusion of vorticity from an
accelerating particle, the gravitational force, and finally, two terms resulting from the stress
field of the fluid flow acting on the particle (including a shear stress term and a pressure
gradient or buoyancy term).



Lagrangian accelerations are dominant at the smallest spatial scales of the flow,
corresponding to the dissipation or Kolmogorov scale 4 . Because it is assumed that

properties of the dissipation scale eddies depend only on v and it follows that these eddies
will have a timescale ¢ = (v/¢ )" , where ¢ is the TKE dissipation rate.

Therefore the Stokes number for droplets in a turbulent flow is:

Ta 2pg€'’*r?
S{f — Pt 1[{(2 .
Tk 9o -

For typical cloud conditions (¢ ~ 10 m*s™, v~ 10° m*s™ ) and » ~ 10 m, the Stokes
number is close to the order S_ ~ 107"
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Fig. 1. Stokes number (S )-velocity ratio (S ) diagram showing location of di-
rect numerical simulations (DNS) and laboratory experiments (LAB) for particles
in 3D turbulence. The S-S region for cloud droplets of 5-25-um radius is shown
for an appropriate range of eddy dissipation rates (10°~0.09 m* s ). The dashed
lines are for constant eddy dissipation rates (107, 107, 107, and 0.09 m* s*) and
radii varying from 5 to 25 um, while the solid lines are for constant radii (5, 10, 15,
20, and 25 yum).

Vaillancourt and Yau, 2000

Stokes number is the
ratio between the
particle’s response time
(T,) and a characteristic

timescale of the flow (1),
St=1/T

Velocity ratio: terminal
velocity of the particle
nondimensionalized by
the Kolmogorov velocity

Sv = VT /vn



EXAMPLE:
droplets in
prescribed vortex

flow

Bajer et al., 2000

dV
M— = —6mRpu(V —u) + mg, (1)

where y is the viscosity of the air, g is gravita-
tional acceleration and u is a the air flow field in
the cloud which for the sake of this problem we
assume to be prescribed, i.e. unaffected by the
droplets. Although droplets are passively carried
by the air they are not passive tracers, as the tra-
jectories they trace out are different from the paths
of the fluid elements.

Let (r,#, z) be polar co-ordinates with the (=
direction along the vortex axis inclined at an angle
¢ from the vertical. In this frame of reference the
gravity force takes the form

g = gsin ¢ cosfe,. — gsin ¢sinfley — g cos ge..
(2)

The velocity field u is a sum of the flow due to the
uniform irrotational straining flow, and the flow due
to an axisymetric vortex having azimuthal velocity
u(r),

u= —%n-rér + aze, + u(r)ey. (3)



The equation (1) takes the form

(Ve VRN _
d\dt ~ & -

- (Vo + bar) + Vysingeosd, (4

dVy VeV B
Td ( 17 s > ) =

(Ve <u(r]) = Vgsingsing,. (3)

Tﬁ% = — (V. —az) =V, cos ¢, (6)
b A

where 7;, = m/(6mRu) is the characteristic time
of the droplet response to the changes in fluid ve-
locity and V), = gmy is the terminal velocity of the
gravitational settling.



In the following we will consider a model vor-
tex with total circulation I' and gaussian distribu-
tion of vorticity. The azimuthal velociy u(r) is given
by

u(r) = % (1 — e_{”}ﬂ]ﬂ) . 0= 1\/11/7{1 (7)

Here the dimensionless number N is the ratio of
the vortex radius 4 and the radius of the familiar
Burgers vortex, an exact steady solution of the
Navier-Stokes equation likely to be a good model
of the small-scale coherent structures in turbu-
lence.



In the Stokes regime (1) droplets of radius E
adapt their speed to that of ambient flow on the
time-scale

Td = (Qp“.RE}/(ngl, (8)

where p,, is the density of water and . is the vis-
cosity of air and the corresponding length scale is
equal

S=/I'rq/27. (9)

The motion along the vortex axis separates and in
dimensionless units equations (4-5) governing the
motion in the vertical plane take form

- ;r-f;':z o —%L-ﬂ' -7 - L:E sin E! {10}
270+ 18 = ' —rf —Locosh,  (11)

where
Ly =ary, Lo=gri2n/Try)'/?  (12)

are two non-dimensional humbers characterising
the droplet.



Equations (10-11) have one stable fixed point
when L, < L3 and one limit cycle otherwise.
Small droplets tend to the limit cycle and keep
circulating around the vortex axis. Large droplets
move towards the fixed point (figure 1).

a)

Figure 1: The trajectories of droplets with L, /L3 equall
a) 0.8 b)1.004;¢c)1:d) 2.



Figure 2: Temporal evolution of the distribution of iden- Figure 4: Temporal evolution of the distribution of
tical droplets near a horizontal vortex with axial stretch- droplets with gaussian spectrum near a horizontal vor-
ing. tex with axial stretching.
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Figure 5: Distribution of droplets with gaussian spec-
trum after 2.5 turnover times of the vortex. Initial distri-
bution was spatially uniform.



FiGure 1. — Particles with different inertia released at the same position and inside a small
scale vortical structure of the fluid. The neutrally buoyant particles (red) remain strongly
trapped, while particles with higher and higher inertia, respectively greeen, blue, yellow etc,
are less and less sensitive to small scale vorticity.

F.Toschi



Cloud-scale and small-scale turbulence

Entrainment and mixing:
Cumulus
Stratocumulus
Mechanisms for entrainment in clouds

Turbulence and cloud microphysics:
motion of cloud droplets

Droplet size distribution

Condensational growth and turbulence

Collisions, coalescence and turbulence
Droplet relative velocity
Droplet clustering (preferential concentration)
Preferential sweeping

The effect of entrainment on the droplet size distribution
Homogeneous and inhomogeneous mixing




Length scales associated with condensational growth of droplets.

The condensational growth of droplets is characterised by vapour pressure
and temperature gradients in the ambient air. In the classical theory of
droplet growth by water vapour diffusion, ambient conditions are defined by
prescribed fields far from an isolated droplet (infinity). Imposing them at a
radius similar to the mean distance between droplets does not result in
significant modifications . \

However, when the growth of an ensemble of droplets in turbulent air is
considered, the temperature and the moisture fields away from the droplet
may vary considerably.

Following Vaillancourt et al. (2001) we define the ambient conditions to be
the moisture and temperature fields in the vicinity of a given droplet
averaged over the volume defined by the mean distance between droplets.
This simplification is frequently applied in numerical models of droplet
condensation in turbulence (e.g. Celani et al., 2005, 2007; Lanotte et al.
2009).

Most studies of the growth of an ensemble of droplets in cloud physics
neglect the direct interaction between droplets. Justification is based on the
argument that the mean distance between cloud droplets (~ 2mm for a
typical concentration of 100 cm™ ) is at least an order of magnitude larger
than the distance (~ 10a or less) affected by the variation of moisture and
temperature. Thus, the volume of air occupied by a single cloud droplet is
much larger than the volume affected by variations in the moisture
and temperature due to cloud droplet growth.

After Devenish et al., 2010



Time scales associated with condensational growth of droplets

There are a number of time scales associated with the condensational growth of cloud
droplets.

The first is associated with the diffusional growth of an isolated droplet and in typical
conditions is less than 1x107° s,

Another time scale occurs when the boundary conditions for water-vapour concentration
and temperature at the surface of the droplet are not assumed constant. During
condensation water vapour diffuses onto the surface of the droplet, latent heat is released,
and consequently the surface temperature (the psychometric temperature) of the
droplet changes. The relaxation time associated with this process lies typically between
5x107*s and 1x107%s for droplet radii between 5 ym and 25 ym) and is therefore the
slowest time scale associated with the condensational growth of a droplet.

Vaillancourt et al. (2001) showed that, for a=20um and €=100 cm? s~ , the ratio of this time
scale to fastest time scale associated with changes to the ambient conditions due to
turbulence (either TorT ) is much less than one and the assumption of a steady-state

distribution of water-vapour concentration and temperature is valid.

Numerical simulations byf Celani et al. (2005, 2007), Lanotte et al. (2009) , Sidin et al.,
(2009) suggest that cloud droplet spectra can be broadened during condensation, which is
different from simulations of Vaillancourt et al. (2002) and from the measurements in real
clouds (as we can interpret them).



Collisions, coalescence and turbulence

The collision and coalescence of droplets in a turbulent flow are governed by
(i) geometric collisions due to droplet-turbulence interactions;

(i) collision efficiency due to droplet-droplet interactions and

(iif) coalescence efficiency due to droplet surface properties.

In practice, it is difficult to distinguish between collision and coalescence and the
experimentally measurable quantity is collection efficiency defined as the ratio of the actual
cross-section for droplet coalescence to the geometric cross-section.

Geometric collisions

DNS results (e.g. Franklin et al. 2007; Ayala et al. 2008a) show that turbulence

can increase the collision kernel relative to the case of stagnant air by two effects:
droplet relative velocity

droplet clustering.

Turbulence may also affect the droplet relative velocity through preferential sweeping

whereby droplets bias their downward trajectories towards regions of higher turbulence
thus increasing their terminal velocities relative to still air.



In multidisperse suspensions, |w_| is always

larger than its monodisperse counterpart.

This can be understood by considering a limiting
case of monodisperse suspension, in the
absence of gravity. For low St, velocities of
equally sized droplets are strongly correlated,
both with the fluid and each other.

As St increases, the correlation of the

droplets with the flow and each other decreases
and |w12| increases. However, for St>>1, droplets

respond slowly to changes in the fluid velocity
and |w_| decreases.

For multidisperse droplets, the velocities of the
droplets decorrelate more rapidly than the
equivalent monodisperse cases since the
droplets with different inertia respond
differently to changes in the flow.
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Fig. 4. Three examples of the comparison between an observed spectrum (dotted line) and
the adiabatic reference (dashed line), after instrumental broadening by the Fast-FSSP simulator
(solid line). The total droplet number concentrations are, respectively, 225 (a). 329 (b). and 455
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With the improved size and spatial
resolutions of the Fast-FSSP measurements
it has been possible to identify very narrow
spectra in most of the cloud traverses per-
formed at the upper levels of cumulus
clouds during the SCMS experiment.

These spectra are much narrower than
previously measured with the standard
probe. The regions of narrow spectra show
characteristics close to the adiabatic
reference, such as LWC values slightly
lower than the adiabatic value at that level
and values of droplet concentration close to
the maximum value within the cloud
traverse. The spectra observed in these
regions are narrow but still broader than the
adiabatic reference.

The high concentration densities of droplets
with diameter smaller than the mode can be
attributed to partial evaporation of some
droplets resulting from the mixing with dry
air. The occurrence of this process is
attested by the slightly subadiabatic values
of LWC.

Chaumat and Brenguier, 2001



Preferential concentration — enhanced local densities, more probable collisions?
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Observations of droplet clustering in real clouds remain ambiguous which has led some
authors to question its importance in real clouds.

Moreover, DNS of sedimenting droplets has shown that turbulent enhancement of collision
rates occurs primarily through changes to the droplet relative velocity and the collision
efficiency.

Nevertheless, some argue that the vortex tubes that are associated with small-scale
turbulence at high Reynolds numbers persist for long and droplets with a considerable
range of St are able to spin out of the vortex.

The importance of intermittency in potentially increasing droplet clustering has also been
raised by Falkovich et al. (2002)who based on theoretical arguments claim that clustering
can increase collisions by a factor of 10.

Without a clear theoretical basis for the R, -dependence of clustering, which will remain
valid in the large-R limit, it is likely that these arguments will continue.



Small-scale turbulence/rain formation in clouds — a subgrid scale
process
a) inadequate measurement capabilities
(resolution problem, different sampling volumes of various sensors)
b) subgrid-scale processes in cloud resolving and LES simulations.

Closing the gap in resolved scales
a) DNS and particles in turbulence;
b) laboratory experiments with particle tracking and collisions.
c) in situ efforts.

Issues
a) (almost) no combined measurements of microphysics,
turbulence and dynamics in small-scales;
b) problems with the statistical interpretation of data from measurements;
c) unclear subgrid-scale parameterizations in cloud simulations.
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plus aerosol sampling with instruments inside aircraft

Examples of the cloud edge in
1000 Hz temperature (thin
line) and LWC (thick line)
records. Sharp jumps in LWC
and temperature

at distances of the order of 10
cm (data resolution) are
currently observed. Notice a
shift between the temperature
and LWC records resulting
from the 6 m separation
between the instruments and
the low pitch angle of the
aircraft with respect to the
cloud clear air interface.

Haman et al., 2007
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Numerical simulations of small scales of cloud mixing with the environment.




D/Dt = d/dt + vV

= —Vm + . + Vv, Non-standard symbols:

n — normalized pressure fluctuation
C, — condensation rate

-1

-
[

=

>

q,, q,— specific humidity, liquid water content
VT,

B — normalized buoyancy

m,Viq,.

Andrejczuk et al., 2004,
Abdrejczuk et al., 2006
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Malinowski et al.,
2008
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Figure 7. LWC (Q_c) in a vertical cross section through the computational
domain after 10.8 s of the simulation. The area of the cross section is 64 cm X
64 cm, and white regions represent clear air filaments.



Mixing diagram of
cloudy and
environmental air.
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respectively. Malinowski et al., 2008
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Homohenenous vs. Inhomogeneous
mixing (Baker and Latham 1979;

Extremely

In the homogeneous mixing scenario, < homogeneous

the number of droplets does not change 1

and the mean droplet size decreases. In A = REF | '
the extreme inhomogeneous mixing Lo — Toveer
scenario, droplets from a fraction of the ey
cloudy volume evaporate completely to  g| — 43%ddy
bring the mixture to saturation, and the
droplets from the rest of the cloudy
volume are dispersed over the combined
volumes without changing their size.

07r

D&r

NINO

05
If the droplet evaporation time scale is
much larger than the time scale of
turbulent homogenization, the mixing is
expected to be close to homogeneous.
In the opposite limit (i.e., the droplet
evaporation time scale much smaller
than the time scale of turbulent 01f
homogenization), the mixing is supposed 4

04r

Dar

Extremely inhomogeneous

D21

to be close to the extremely 0
iInhomogeneous.
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Andrejczuk et al., 2009
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Scatterplot of the slope of the mixing line on the r — N diagram versus the ratio between the turbulent
mixing and the droplet evaporation time scales. Each datapoint represents analysis of instantaneous DNS
data as explained in text, with triangles (circles) depicting datapoints with the mixing time scale calculated
using TKE (enstrophy). The solid line is the proposed relationship to be used in subgrid-scale modeling.



For practical purposes, all slopes smaller than
0.01, or perhaps even 0.1, lead to similar
results, that is, large changes in the droplet

3
o)

—_
o

0

N
o

d(N/N )y/d(r’/r

radius and negligible changes in the number
1 of droplets. In other words, when the slope is
o . smaller than 0.1, the mixing differs

| insignificantly from the theoretical limit of the
homogeneous mixing. Similarly, the slope
larger than a 100 (and perhaps even 10)
implies negligible changes in the mean
volume radius of cloud droplets compared to
the theoretical limit of the extremely
inhomogeneous mixing. An important result is
that in the critical range of the slopes, say,
between 0.1 and 10, the relationship is

SV S UV ! relatively tight and thus one can suggest a
10 10, , 10 10 10" simple parameterization.

mix evap

For the Damkoehler number around 5, Jeffery (2007) predicts the mixing
regime change from the inhomogeneous to the homogeneous. This agrees
with the break in scaling behavior seen in Figure att /1 = 5.

evap

Smaller slopes, indicating increasing levels of homogeneity at lower ratios
correspond to homogeneous evaporation regime in Jeffery’s terminology.



The set-up of the
experiments is
designed to mimic
basic aspects of
small-scale
turbulent mixing of
a cloudy air with
unsaturated
environment.

Schematic view of the experimental setup.
1 — box with the droplet generator; 2-cloud chamber; 3 — light sheet; 4 — pulsed
laser, 5 — cloudy plume, 6 - camera.












PIV — Particle Imaging

Velocimetry
Principle:

two consecutive frames
compared; displacement of
patterns allows to determine
two components of the veloci

Special algorithm:
iterative (with the increasing

resolution) correlation of

patterns;
mean motion removal;
iterative deformation of
patterns;
median filtering.

Result:
benchmark scenes show the

average accuracy of the
displacement detection =0.3

pixel size.
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Thermodynamic conditions
iIn the chamber.

LWC in the plume ~24 g/kg .

Plume temperature ~ 25°C,
the same as temperature of
the unsaturated chamber air.

Relative humidity of the clear
air inside the chamber varies
in the range 20%~65% for
different experiments.

Temperatures and humidities
monitored on several levels.

Mixing diagram:
k — fraction of cloudy air in the mixture,
Tp — density temperature.

Plume is NEGATIVELY BUOYANT.

Additional negative buoyancy due to evaporative
cooling at the edges of cloudy filaments,
dominant at ambient humidities less than 60%.



Anisotropy of turbulent velocities
(Malinowski et al., 2008)
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Airborne measurements of small-scale turbulent mixing in clouds

POST - Physics of Stratocumulus Top, California, 2008 aerosol (CCN)

temperature,
humidity,
liquid water,
turbulence,
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Fig.5 100S/s (~b0cm spatial resolution) records of temperature and LWC on few porpoises from the
investigated leg of TO13 research flight. Notice remarkable temperature fluctuations above cloud (four
uppermost sections), regions of depleted LWC close to the cloud top (sections 1,2,4), sharp temperature jump
above sharp cloud top (lowest section).
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Fig. 1. ACTOS comprises instrumentation for comprehensive measurements
of thermodynamic, microphysical, and turbulent variables in clouds, at high
spatial resolution. The ACTOS measurement payload is attached to the
. helicopter by means of a 140 m long tether cable. The true airspeed of the
m_l 0 helicopter is about 15 my/s, sufficient to enable stable flight conditions of
ACTOS out of the helicopter's downwash.
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Fig. 9. The distribution of cloud microphysical and turbulence properties in a dimensionless Stokes-settling parameter space. The upper left plot is for a
stratocumulus cloud and the remaining three are for small cumulus clouds. Each point represents data in a 1-second (approximately 15m) average. Diagonal lines
with positive slope are contours of constant turbulent energy dissipation rate, £, at values of 107* 1072, 1072, and 107" (lower right to upper left corners).
Diagonal lines with negative slope are contours of constant droplet diameter at values of 5, 10, 15, 20 and 25 um (lower left to upper right corners).



PARTICLE TRACKS

Particle tracking

Bodenschatz et al.

(b}

Wahrhaft et al.

(e

Figure 8. The wind tunnel in the DeFrees laboratory at Cornell used to study inertial particles
in high Reynolds number turbulence: (a) the plexiglass-open circuit-tunnel (1 m x 0.9m x 20m)
showing the camera (far left, at the beginning of its trajectory), the sled and the laser sheet. (b) The
active grid (used to generate high Reynolds number turbulence) and (c) the spray system. They are
located at the far left of (a).



10'[]_

1074

Fig. 12. Probability density function of the Lagrangian acceleration of
droplets in a turbulent wind-tunnel flow. The accelerations have been
normalized by the gravitational acceleration and scaled to reflect atmo-
spheric conditions (see text). The two PDFs are for flows with Taylor

microscale Reynolds numbers R, = 100 {open circle) and 240 (filled circle) Active Grid Sﬂarays Mirror Flat plate
and Stokes number 5t=0.072. Notice that the tails clearly show droplets = \ / ./'
undergoing accelerations greater than those due to gravity. \‘l ¥
Modified from Gerashchenko et al. (2008). 1 <
Flow
—

Humidifiers with feeding tubes

/’

Moving sled with camera and
collimalting optics

Nd:YAG
Laser

Siebert et al., 2010

Fig. 10. Schematic of the forward scatter experiment (top view). The two separate methods of introducing the droplets are shown together. When the sprays are
operating, the humidifiers and feeding tubes are removed from the tunnel. The y coordinate is measured vertically from the plate.
From Gerashchenko et al. (2008). Copyright Cambridge University Press.
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weather patterns updrafts/downdrafts TKE production/cascade/dissipation cloud droplets

aerosols

entrainment, stirring, mixing — fluctuations of temperature and humidity — particle growth/decay

coupled fluid-particle interactions: buoyancy effects (latent heat, mass loading); direct interactions (viscosity)

particle-particle interactions: collision rate, coalescence efficiency

Clouds are dispersions of drops and ice particles embedded in and interacting with a complex
turbulent flow. They are highly nonstationary, inhomogeneous, and intermittent, and embody
an enormous range of spatial and temporal scales. Strong couplings across those scales
between turbulent fluid dynamics and microphysical processes are integral to cloud evolution
(see the figure).

Turbulence drives entrainment, stirring, and mixing in clouds, resulting in strong fluctuations in
temperature, humidity, aerosol concentration, and cloud particle growth and decay. It couples
to phase transition processes (such as nucleation, condensation, and freezing) as well as
particle collisions and breakup. All these processes feed back on the turbulent flow by
buoyancy and drag forces and affect cloud dynamical processes up to the largest scales.

Bodenschatz et al., Science, 2010.



The last decades have seen the emergence of new views into the “inner workings” of
both clouds and turbulent flows.

For example, high-resolution measurements of temperature, liquid water content,
aerosol physical and chemical properties, and airflow reveal fascinating smalli-
scale cloud structures, invisible with earlier technology.

Laboratory experiments and numerical simulations are allowing us to study
details of cloud microphysics, the fine structure of turbulence, turbulent
Lagrangian dynamics, interactions and collisions between droplets.

Scale-resolving simulations merging computational methods from both cloud and
turbulence communities are yielding new insights into the wide variety of
circulation regimes.

These new tools, experimental and computational, have begun to make it possible to
explore the full complexity of microphysical and fluid-dynamical interactions within
clouds.

We can now begin to address:

How does turbulence influence phase transition processes like condensation,
evaporation, activation, and freezing taking place inside clouds?

~How does turbulence influence particle-particle interactions like collisions,
coalescence efficiencies, ice aggregation, and drop- or ice-breakup?

How do microphysical processes feed back on the turbulence through latent-
heat release, energy injection at small scales, and buoyancy reversal?

>How do small scale processes propagate to and couple to the larger scales,
such as, cloud dynamics, precipitation formation, and radiative properties?
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