

La composition des comètes et des astéroïdes

Dominique Bockelée-Morvan

Aussois 2006

Plan de l'exposé

- 1. Les comètes
 - 1.1 Phase volatile : méthodes, mesures, implications
 - 1.1 Phase réfractaire : spectrométrie de masse et spectroscopie
- 2. Taxonomie et minéralogie des astéroïdes

Les comètes

☐ Formées dans les régions externes de la nébuleuse

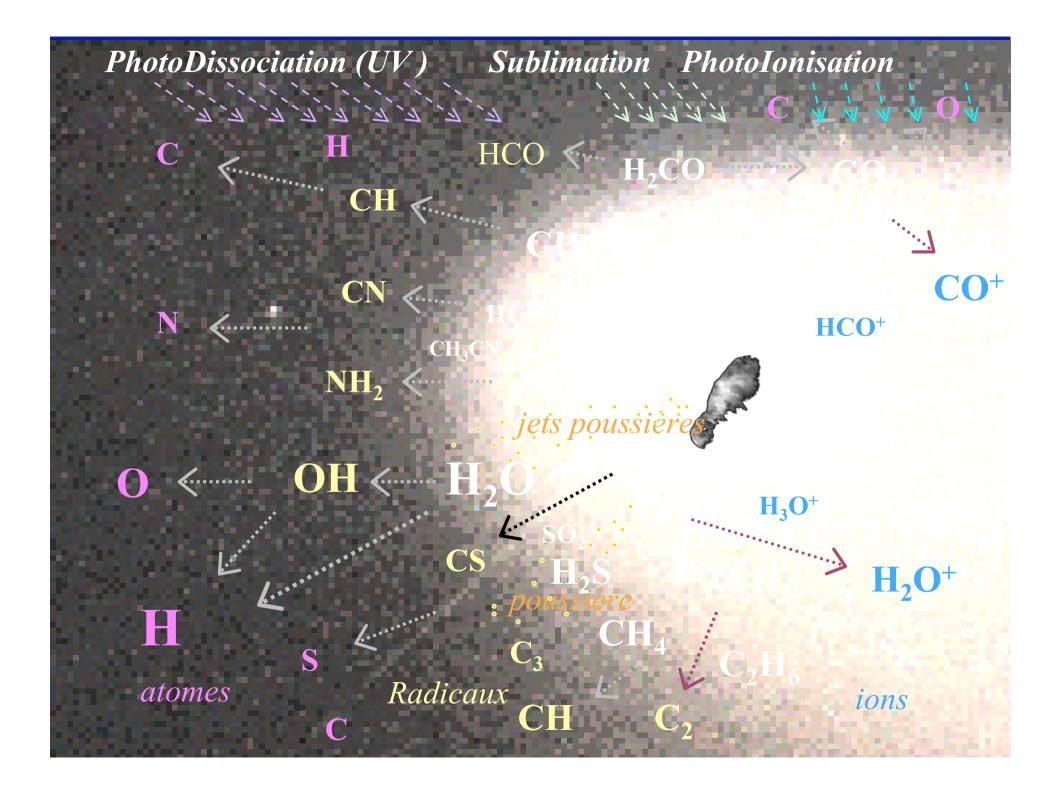
Accès à la composition des régions externes de la nébuleuse primitive Contraintes sur les planétésimaux qui ont formé les planètes géantes Contrainte sur l'évolution première du Système Solaire

- Deux populations :
- comètes à longue période provenant du nuage de Oort
- comètes à courte période (famille de Jupiter) provenant du
- « scattered disk »

Méthodes d'analyse

Retour d'échantillon: Stardust sur 81P/Wild 2

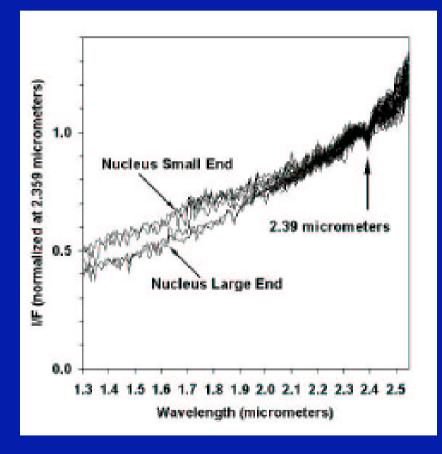
Noyau : difficile, spectroscopie en réflectance (in situ)

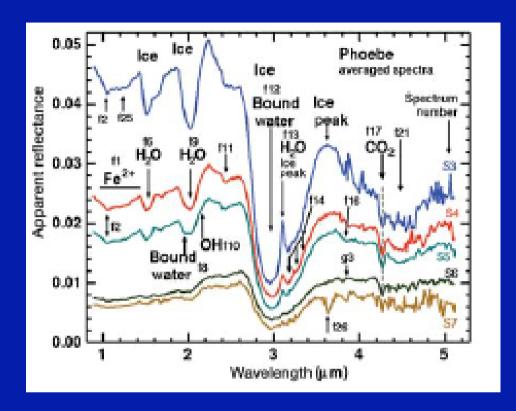

Atmosphère:

Molécules mères, issues du noyau :

Spectrométrie de masse: Giotto

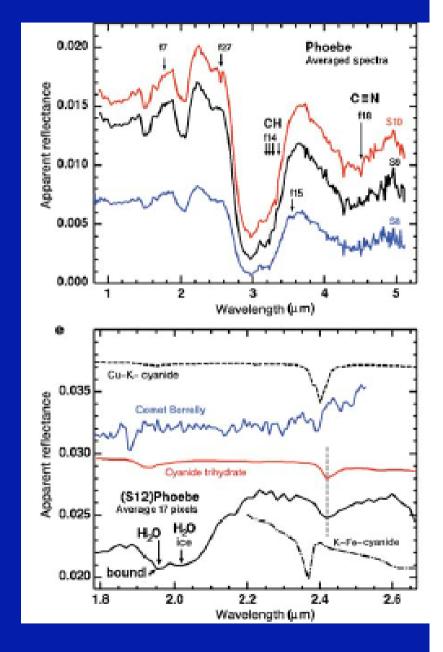
Spectroscopie UV, IR, millimétrique (au sol + spatiale)


- ☐ Molécules filles (ions, atomes, radicaux)
- □ Poussières : spectrométrie de masse (Giotto, Vega, Stardust) spectroscopie IR

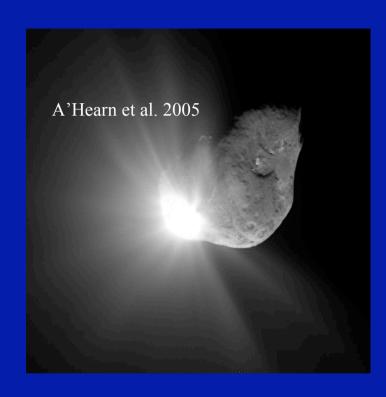

Spectroscopie de la surface du noyau

Comète 19P/Borrelly
Mission Deep Space 1
Signature à 2.39 µm

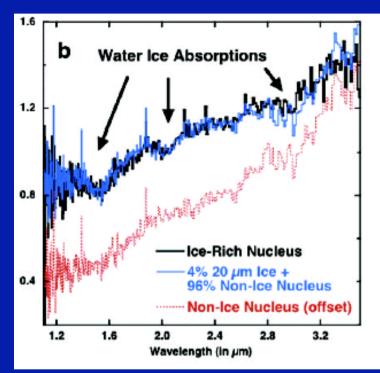
Composé à liaison CN?

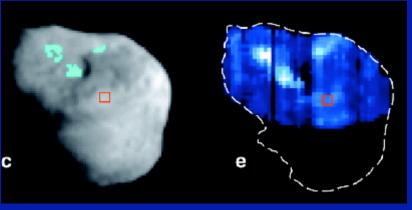


Soderblom et al, 2000, Science 296, 1087


Phoebe KBO capturé

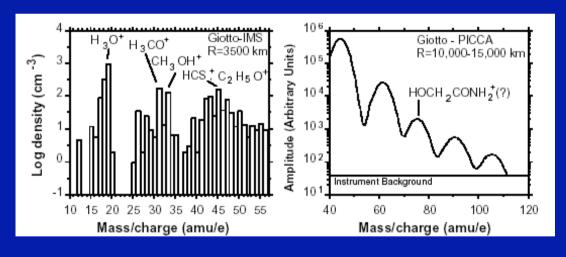
Cassini/VIMS H₂O, CO₂ Organiques, nitriles, composés CN


Clark et al., Nature 435,66, 2005


Détection de la glace d'eau par Deep Impact

9P/Tempel 1, 4 July 4 2005

A'Hearn et al. 2005 Sunshine et al. 2006



Spectrométrie de masse

Résultats de Giotto/Vega dans 1P/Halley

- Limités par la résolution en masse (1 amu)
- Espèces simples et ions, isotopes H₂O, H₂CO, H₂S, NH₃, CH₃OH

Altwegg et al. 1999 Sp.Sci. Rev, 90,3

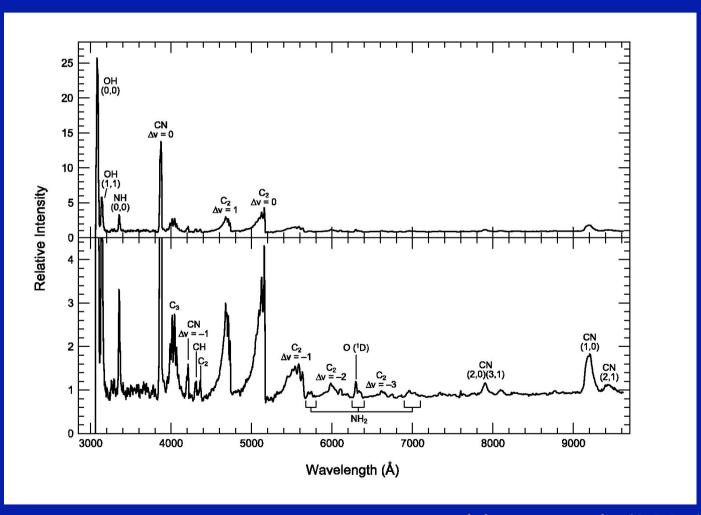
 Détection de composés lourds présences de l'acide acétique, iminoethane, pyridine ... proposés
 Résultats de Stardust sur Wild 2 : composés riches en azote (Kissel et al. 2004)

Spectroscopie moléculaire dans les comètes

Visible et UV: essentiellement radicaux et ions

exceptions : CO and S₂

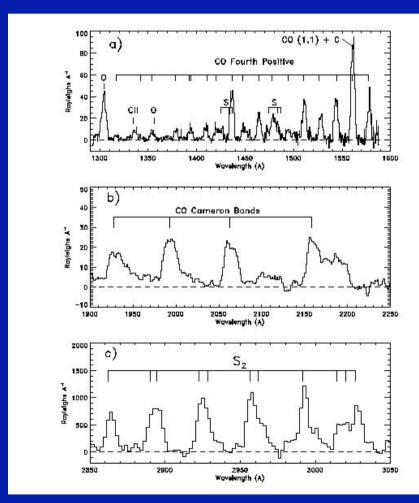
détection possible du phénanthrène et du pyrène in 1P/Halley

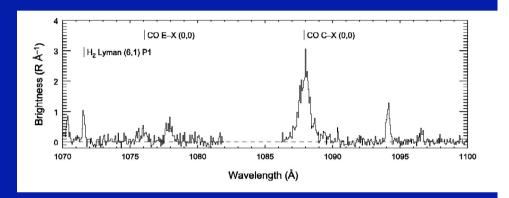

■ IR 2-5 μm: bandes fondamentales of vibration

bandes chaudes de l'eau (e.g., v_3 - v_2)

processus d'émission : fluorescence

■ radio (cm à submm): outil privilégié car atmosphères froides (50 à 100 K)


Un spectre typique dans le visible/IR proche


Feldman et al. (2005)

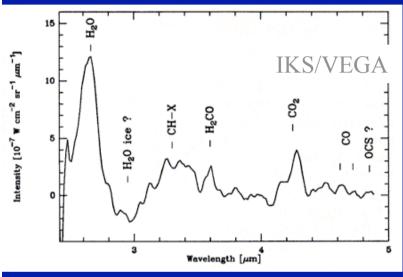
Spectres UV cométaires

Spectres HST de C/1996 B2 (Hyakutake)

Spectre FUSE de C/2001 A2 (LINEAR)

Feldman et al. (2002)

Weaver et al. (1998)


radicaux	OH, CH, NH, NH ₂ CN, C ₂ , C ₃ , CS, NS, SO CN, C ¹³ C, C ¹⁵ N, C ³⁴ S
atomes	H, O, C, S Na, K*, Cr*, Ca*, Mn* Fe*, Ni*, Cu*, Co*, V*
ions	O ⁺ , C ⁺ , Ca ^{+*} H ₂ O ⁺ , H ₃ O ⁺ , OH ⁺ CO ₂ ⁺ , CO ⁺ , HCO ⁺ CH ⁺ , N ₂ ⁺

^{*} uniquement dans comètes rasantes (sungrazing)

Chronology of identification of parent molecules in Comets

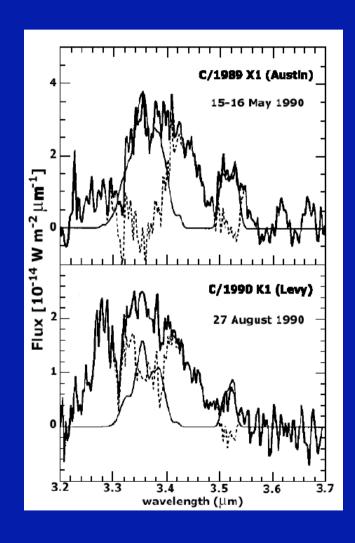
Year	Comet	Technique
1976	<i>C/1975 VI (West)</i> CO	UV
1983	C/1983 H1 (IRAS-Araki-Alcock) S ₂ NH ₃ ?	UV radio
1985-1986	$\frac{1P}{\text{Halley}}$ H_2O HCN H_2CO ? $\text{C}_{14}\text{H}_{10}$?	IR radio radio, IR UV
1990	$C/1989~X1~(Austin),~C/1990~K1~(Levy)$ $H_2CO,~H_2S$ CH_3OH	radio radio, IR
1996	C/1996 B2 (Hyakutake) NH ₈ , HNC, CH ₈ CN, OCS?, HNCO? CH ₁ , C ₂ H ₂ , C ₂ H ₆ HDO, H ¹³ CN	radio IR radio
1997	C/1995 O1 (Hale-Bopp) HNCO, HC ₃ N, OCS, SO ₂ , H ₂ CS NH ₂ CHO, HCOOH, HCOOCH ₃ , CH ₃ CHO HOCH ₂ CH ₂ OH (identified in 2003) HC ¹⁵ N, DCN, H ₂ ³⁴ S	radio radio radio radio

Spectroscopie infrarouge (1)

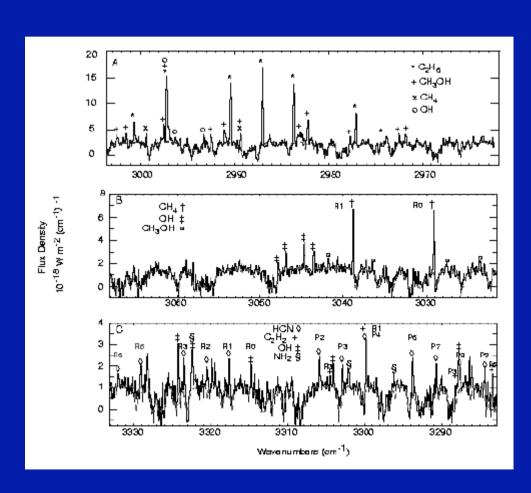
Combes et al. (1986)

H₂O, CO, CO₂, H₂CO, CH₃OH

3.3-3.5 µm band: organiques, hydrocarbures -CH-


en phase gazeuse

composés non identifiés at


 $3.42 \mu m$

3.28 µm band: PAHs?

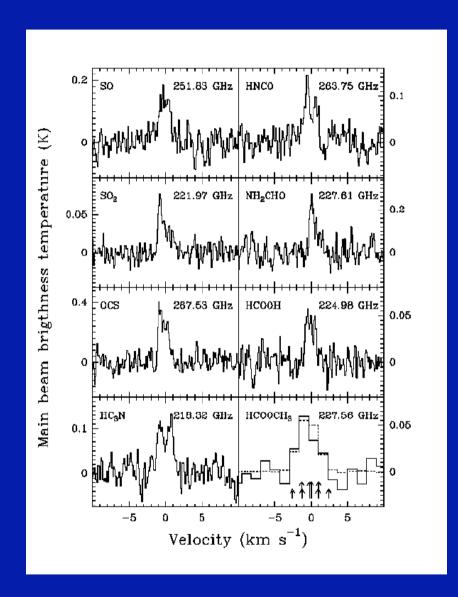
bandes des PAHs dans l'IR thermique non

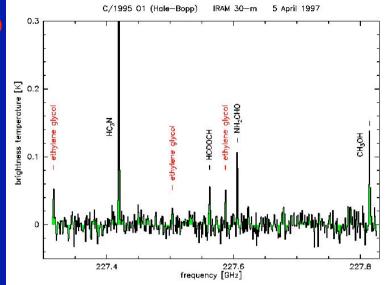
Spectroscopie infrarouge (2)

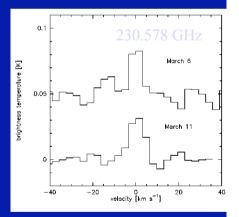
Haute résolution spectrale Raies ro-vibrationnelles de CH₄, C₂H₂, C₂H₆ CH₃OH, HCN OH, NH

Raies non identifiées

Spectres IR des organiques mal connus (structure ro-vibrationnelle, intensités)


C/1999 H1 (Lee) Keck/NIRSPEC Mumma et al. (2001)


Spectroscopie millimétrique

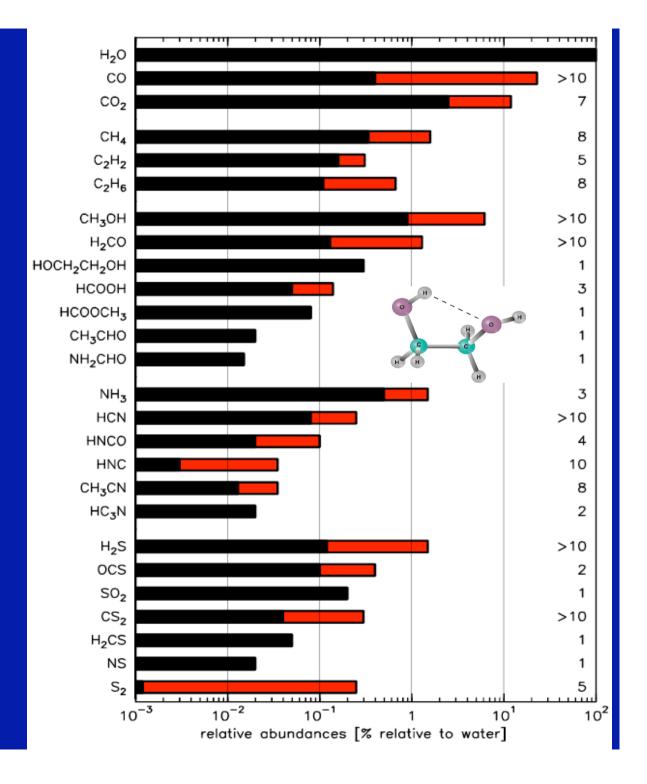

- HCN 89 GHz (1985, comet Halley, IRAM 30-m)
- 19 molécules détectées (isotopes, radicaux, ions non inclus)
- beaucoup d'identifications dans les comètes Hyakutake and Hale-Bopp
- Isotopes: HDO, DCN, H¹³CN, HC¹⁵N, C³⁴S, H₂³⁴S
- Radicaux et ions: NS, CS, SO, CN, H₃O⁺,CO⁺

Nouvelles molécules dans Hale-Bopp

Crovisier et al. 2004 A&A 418, L35, 2004

Ethylene glycol HOCH₂CH₂OH 11 raies identifiées en 2003

Bockelée-Morvan et al. A&A 353, 1101, 2000

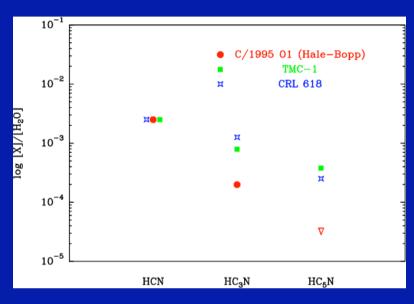

Abondances moléculaires

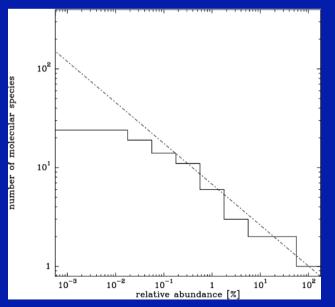
Diversité chimique

Diversité parmi les comètes provenant du nuage de Oort

Comètes de la famille de Jupiter (provenant de la ceinture de Kuiper): pas de différences notables (sauf CO, sous-abondant) avec la composition des comètes du nuage de Oort (mais faible échantillon)

Crovisier 2005




Complexité moléculaire

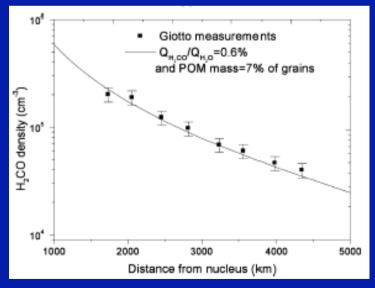
- abundances → quand complexité
 C₂H₅OH/CH₃OH <1/25
 cyanopolyynes
- mais $CH_4 \sim C_2H_2 \sim C_2H_6$
- alcools versus aldéhydes

 $CH_3OH > H_2CO$ $OHCH_2CH_2OH > CH_2OHCHO$

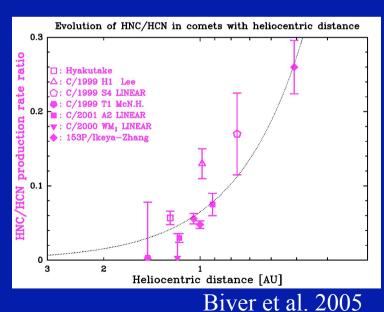
Réactions grain-surface?

Crovisier et al. A&A 418, 1141,2004

Autres évidences de molécules complexes


sources étendues de H₂CO, CO, HNC

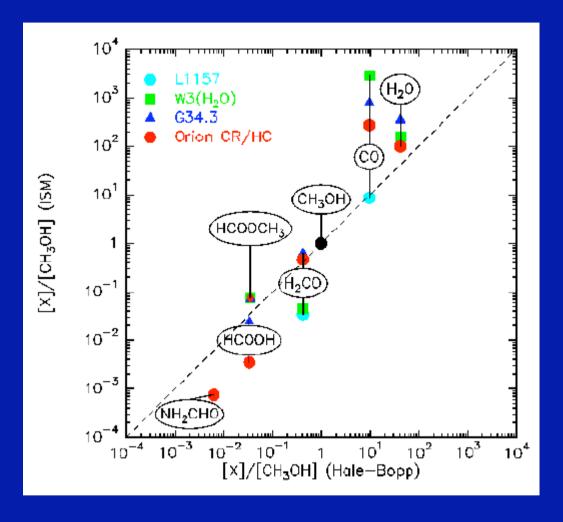
Grains organiques?


H₂CO: thermodegradation du polyoxyméthylène (polymère de H₂CO)

CO: source étendue non identifiée

HNC: sa production augmente quand la distance au soleil décroit

Cottin et al. 2004, Icarus 167, 397



Comparaison glaces interstellaires, glaces cométaires

	High-mass Stars	Solar-type Stars	Comet Average
H ₂ O	100	100	100
CO	9-20	5-50	1.8-30
CO_2	12-20	12-37	3-6
CH ₃ OH	0-22	0-25	1.8 - 2.5
CH_4	1-2	<1	0.14 - 1.5
H ₂ CO	1.5-7		0.4 - 4
OCS	0 - 0.3	<0.08	0.1 - 0.4
NH_3	0-5	_	0.5 - 1.5
HCOOH	0.4-3	_	0.09
C_2H_6	<0.4	_	0.11 - 0.67
HCN	<3		0.1 - 0.3
C_2H_2	_	_	0.1-0.5

Ehrenfreund et al. 2004

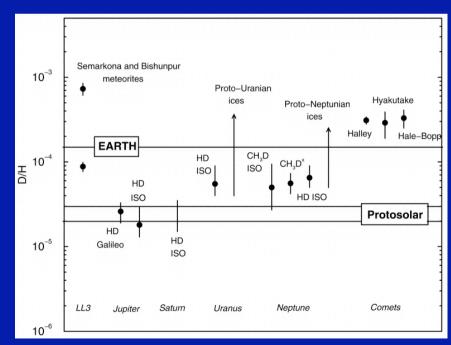
Analogies avec milieu interstellaire: hot cores et flots bipolaires

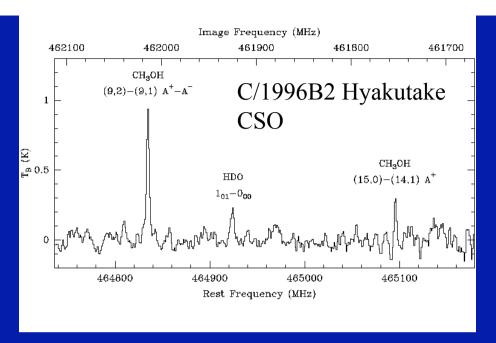
Sgr B2(N) : glycol/CH₃OH = $5 \cdot 10^{-4}$

Hale-Bopp : $glycol/CH_3OH = 0.1$

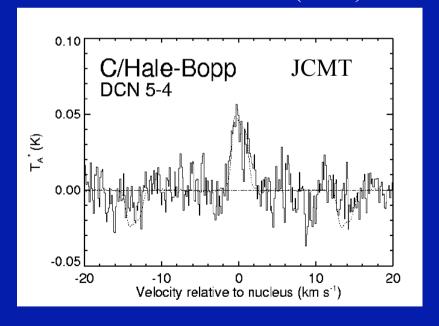
Origine des glaces cométaires

- Molécules cométaires: en grande partie formées dans le nuage pré-solaire ou pendant sa phase d'effondrement (réactions ion-molécule ou à la surface des grains)
- ☐ Certaines produites dans la nébuleuse solaire : peut-être
- thermochimie dans les régions internes : ne peut expliquer CH₄ et NH₃ (Mousis et al. 2002)
- production d'hydrocarbures par catalyse Fisher-Tropsh (Kress & Tielens 2001)
 production de CH₄
- combustion du carbone (Gail, 2004): produit CH₄ et C₂H₂, mais pas C₂H₆
- chimie type ISM dans les régions externes ?
- ☐ Les glaces cométaires se sont condensées dans la nébuleuse solaire
 - piégeage sous forme de clathrates hydrates?
 - proposé pour expliquer la déficience en N₂ et gaz rares (Iro et al. 2003)
 - Ne/O < 700 Ar/O < 10 x rapports solaires


Espèces deutérées


 $H_2O: D/H = 3 \cdot 10^{-4}$

HCN: $D/H = 2.3 \ 10^{-3}$


D atomic détecté (HST)

Dans CH₃OH, H₂CO, NH₃, CH₄: Limites supérieures de 10⁻² ou quelques 10⁻²

Bockelée-Morvan et al. (1998)

Meier et al. (1998)

Interprétation du D/H dans les comètes enrichissement f = 12 par rapport à la valeur protosolaire

Fractionnement dans la nébuleuse solaire (H2O/HD): au plus f = 1.5 Le D/H cométaire reflète au moins partiellement un fractionnement isotopique de type MIS (réactions ion-molécule / grain-gaz)

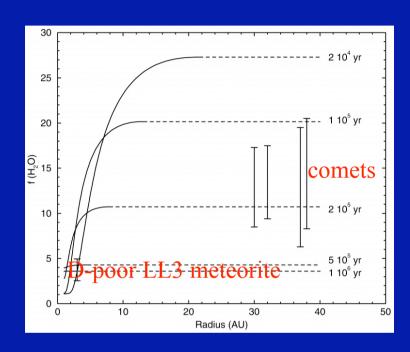
- Meier et al. (1998):

 D/H acquis dans le nuage présolaire à T = 30-50 K
- Aikawa et al. (1999)

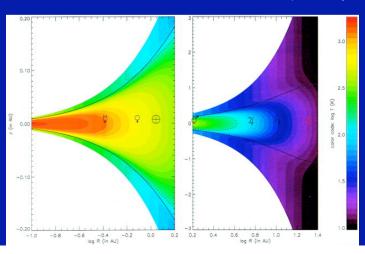
 D/H acquis dans les <u>régions extérieures de la nébuleuse solaire</u> par réactions ion-molécule
- Hersant et al. (2001)

 D/H acquis dans le nuage présolaire et reprocessé dans la nébuleuse solaire interne

D/H in water in a turbulent evolving solar nebula


Solar nebula starts with f = 30 in water

Isotopic exchanges in the Solar Nebula: $H_2O + HD \implies HDO + H_2$


efficient at T > 200 Koccurs in vapor phase inner parts : $f \rightarrow f=1$

Large scale radial mixing by turbulence outer regions mixed unprocessed and processed water

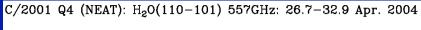
D/H in cometary water: constraints on solar nebula model (turbulent viscosity coefficient, initial inner radius)

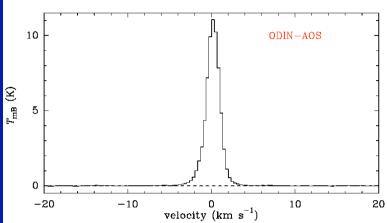
Hersant et al. (2001)

Rapports isotopiques

¹² C/ ¹³ C	[C ₂]	93 ± 10	4 comets	Wyckoff et al. (2000)
	[CN]	95 ± 12	1P/Halley	Kleine et al. (1995)
	[HCN]	111 ± 12	Hale-Bopp	Jewitt et al. (1997)
14 _{N/} 15 _N	[HCN]	323 ± 46	Hale-Bopp	Jewitt et al. (1997)
	[CN]	140 ± 35	Hale-Bopp	Arpigny et al. (2003)
¹⁶ O/ ¹⁸ O	$[H_2O]$	518 ± 45	1P/Halley	Balsiger et al. (1995)
	$[H_2O]$	470 ± 40	1P/Halley	Eberhardt et al. (1995)
	$[H_2O]$	450 ± 50	153P	Lecacheux et al. (2003)
³² S/ ³⁴ S	[CS]	27 ± 3	1P/Halley	Jewitt et al. (1997)
	[S]	23 ± 6	1P/Halley	Altwegg (1996)
	$[H_2S]$	16 ± 3	Hale-Bopp	Crovisier et al. (2004)

Valeurs terrestres:


$$\overline{{}^{12}\text{C}/{}^{13}\text{C}} = 89$$
 $\overline{{}^{16}\text{O}/{}^{18}\text{O}} = 500$ $\overline{{}^{14}\text{N}/{}^{15}\text{N}} = 270$ $\overline{{}^{32}\text{S}/{}^{34}\text{S}} = 24$


Observations Odin

 $H_2O, H_2^{18}O$

C/2001 Q4 (NEAT)

H₂O

H₂¹⁸O

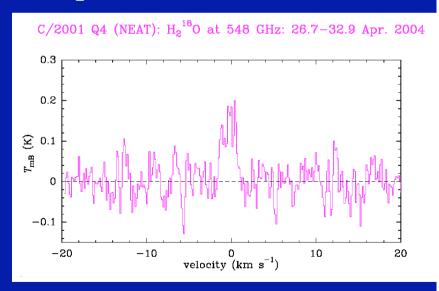
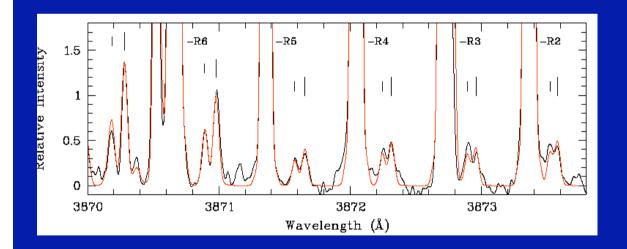



Table 1. Carbon and nitrogen isotopic ratios in comets.

Comet	Туре	r (AU)	Method (carrier)	¹² C/ ¹³ C	¹⁴ N/ ¹⁵ N	References
C/1995 O1 (Hale-Bopp)	OC	0.92	Millimeter (HCN)	109 ± 22	330 ± 98	Ziurys et al. (1999)
		1.20	Millimeter (HCN)	111 ± 12	323 ± 46	Jewitt et al. (1997)
C/1995 O1 (Hale-Bopp)	OC	0.92	Optical (CN)	90 ± 30	160 ± 40	Manfroid et al. (2005)
		0.93	Optical (CN)	95 ± 40	140 ± 45	Manfroid et al. (2005)
		2.73	Optical (CN)	80 ± 20	140 ± 30	Manfroid et al. (2005)
C/2000 WM1 (LINEAR)	OC	1.21	Optical (CN)	115 ± 20	140 ± 30	Arpigny et al. (2003)
C/2001 Q4 (NEAT)	OC	0.98	Optical (CN)	90 ± 15	135 ± 20	Manfroid et al. (2005)
		3.70	Optical (CN)	70 ± 30	130 ± 40	Manfroid et al. (2005)
C/2003 K4 (LINEAR)	OC	1.20	Optical (CN)	90 ± 15	135 ± 20	Manfroid et al. (2005)
		2.61	Optical (CN)	85 ± 20	150 ± 35	Manfroid et al. (2005)
122P/1995 S1 (de Vico)	HT	0.66	Optical (CN)	90 ± 10	140 ± 20	Jehin et al. (2004)
153P/2002 C1 (Ikeya-Zhang)	OC	0.92	Optical (CN)	90 ± 25	170 ± 50	Jehin et al. (2004)
C/1999 S4 (LINEAR)	OC	0.88	Optical (CN)	100 ± 30	150 ± 40	This work
88P/1981 Q1 (Howell)	JF	1.41	Optical (CN)	90 ± 10	140 ± 15	This work

Comet types: OC: Oort Cloud; HT: Halley-type; JF: Jupiter-family.

Hutsemékers et al. 2005

14N/15N

 $\overline{\text{IDP}} = 200$

MOM: = 250

Terrestre = 270

Protosolaire = 420

CN, ¹²C¹⁵N, ¹³C¹⁴N dans 88P/Howell

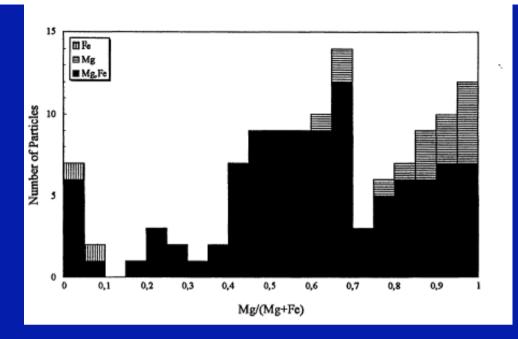
Composition de la poussière cométaire

- ☐ spectrométrie de masse : PUMA/Vega, PIA/Giotto (Halley) CIDA/Stardust (Wild 2)
- ☐ émission thermique : température de couleur, signatures spectrales

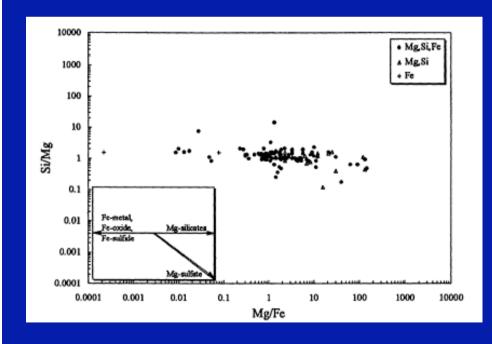
propriétés de diffusion : couleur, albedo, polarisation

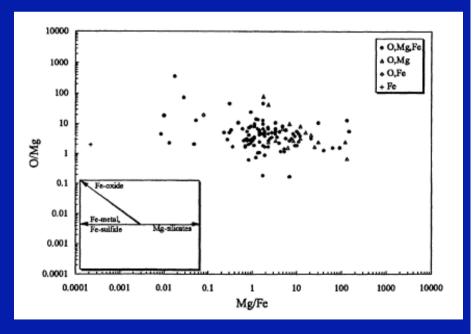
Données de spectrométrie de masse (1)

Halley: Quelques nanogrammes étudiés (5000 grains)

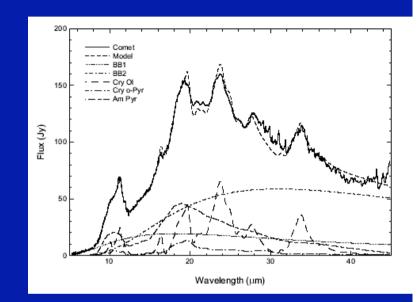

- ☐ Composition élémentaire :
- éléments réfractaires : composition solaire (à un facteur 2)
- H, C, N: enrichis /chondrites CI
- gaz+poussières : tous les éléments en proportion solaire sauf H et N rapport G:P = 2:1 (H,O); = 1: 2 (C, N)
- grains organiques et réfractaires
- 25 % CHON essentiellement, densité 1g/cm³
- 25% réfractaires (silicates et autres), densité 2-3 g/cm³
- 50% de composition intermédiaire : cœur réfractaire+gangue organique
- réfractaires/CHON : rapport 1-2 en masse
- moins de CHON dans la coma externe : dégradation/volatilisation

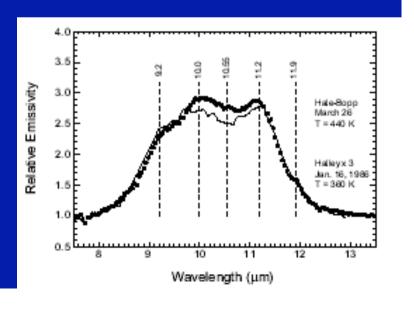
Données de spectrométrie de masse (2)


- ☐ Minéralogie des grains
- existence de grains de carbone presque purs (8-10% du C total)
 carbone amorphe plutôt que graphite
- CHON: hydrocarbures, PAHS?
- réfractaires : distribution Mg/(Fe+Mg) large, 40% riches en Mg Mg/Si ~1, pyroxènes plutôt que olivine (Mg/Si=2) grains riches en Fe: sulfures de Fe (10%), Fe (1-2%), FeO (<1%)
- ☐ Composition isotopique :


Mg, Si, S, Fe: rapports terrestes (à un facteur 2)

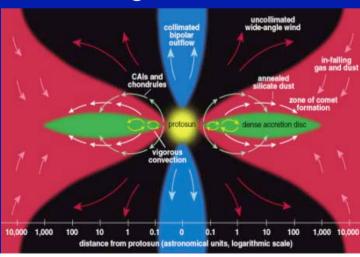
 $^{12}\text{C}/^{13}\text{C}:89-5000$

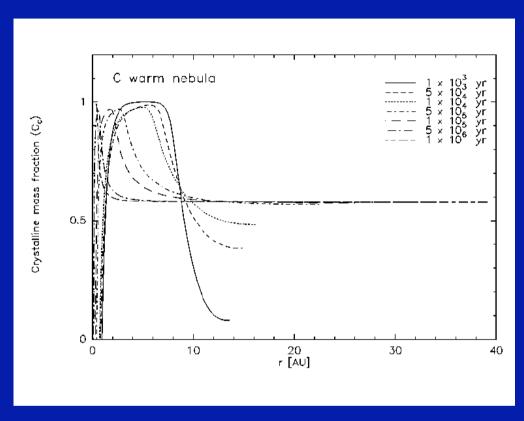

Schulze et al. 1997



Données de spectroscopie infrarouge

- ☐ Signatures spectrales des silicates
- 8-12, 18-20, 23, 27, 33 microns
- olivine et pyroxène riches en Mg (forsterite Mg2SiO₄, enstatite MgSiO₃)
- silicates cristallins et amorphes
- rapport oli./pyr : 0.3 à 1.5 (selon auteur)
- pourcentage cristallins: 8 à 70 % selon auteur
- ☐ Emission large IR lointain, température
- Émission large : T(couleur) > T(corps noir) petits grains carbonés chauds
- bien expliquée par carbone amorphe (kérogène très peu absorbant)
- proportion carbone/silicates ~ 25%

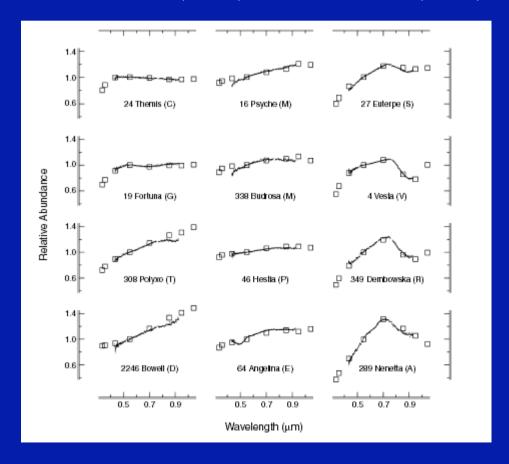

Origine des silicates cristallins


- ☐Silicates cristallins absents dans le MIS (<1%)
- □ Silicates cristallins observés autour des étoiles évoluées, disques, IDP, météorites
- □Origine dans la nébuleuse : condensats ou amorphes processés (T > 1000 K)
- □Plusieurs mécanismes proposés pour interpréter leur présence dans les comètes:
- modèle vent-X de Shu
- cristallisation résultant d'ondes de choc (Harker and Desch 2002)
- cristallisation dans les régions internes et transport dans les régions externes

diffusion turbulente:

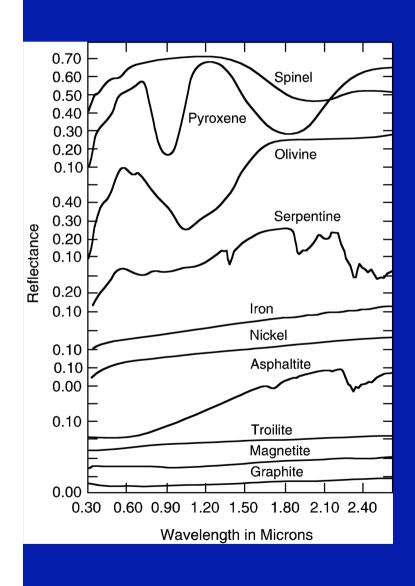
Bockelée-Morvan et al. 2002

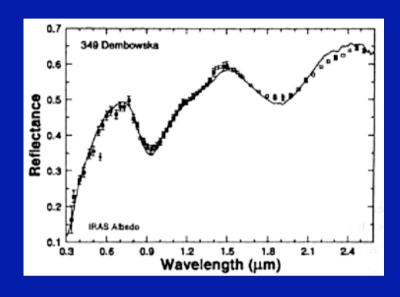
Wehrsted et Gail 2002


Bockelée-Morvan et al. 2002

- ■Modèle α évolutif avec diffusion turbulente : $\alpha = 0.008$, Mdot (t=0) = 10^{-5} Msol/an
- Mécanisme efficace si grains couplés avec le gaz (< qques dizaines de cm)
- **E**chelle de temps de diffusion $\sim 5-50 \ 10^3$ ans

Taxonomie des astéroides


basée sur spectres en réflectance et albedo de la surface de 0.3 à 1.1 µm


Tholen (1984), Barucci & Tholen (1987), Tedesco et al. (1989), Howell et al. (1994)

Classification de Tholen (14 classes)

Signatures de minéraux

3 classes de signatures spectrales de minéraux:

-opaques (magnétite, graphite, carbone) Assombrit le spectre entier, mais très peu de bandes

-métal pur (kamacite)

Augmentation régulière de la réflectivité avec la longueur d'onde

-minéraux silicatés (olivine, pyroxène,..)
Des bandes spectrales fortes et caractéristiques

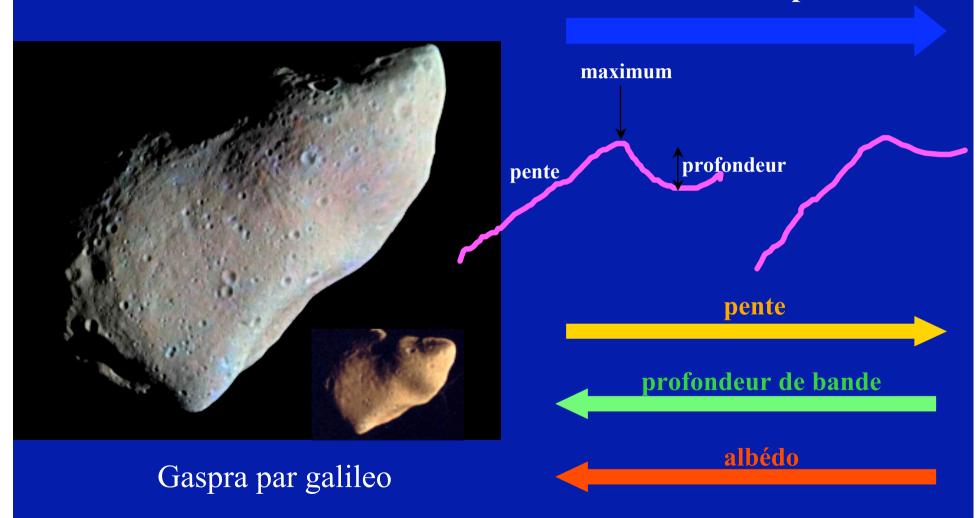
Les limites de la taxonomie

- Pas obligatoirement diagnostique de la minéralogie
- Une même classe : minéralogies différentes
- Tous les minéraux n'ont pas de signatures spectrales ex : matériaux opaques (organiques, magnétite ...)
- Mélange matériaux opaques/silicates : signatures supprimées
- Signatures spectrales : ambiguïtés

Space weathering:

diminue l'albedo, les signatures spectrales, rougit les spectres

Le « space weathering »

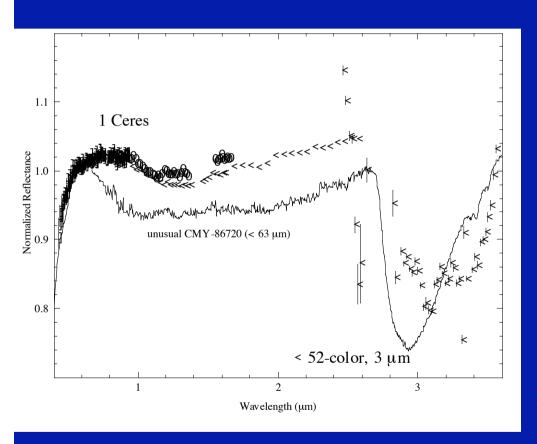

Space weathering

Micro impactage par les météorites Implantation protons du vent solaire

Formation de **régolite**: pulvérisation, brassage, vaporisation

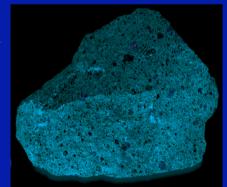
Effets spectraux-?

Effets du « space weathering » Temps

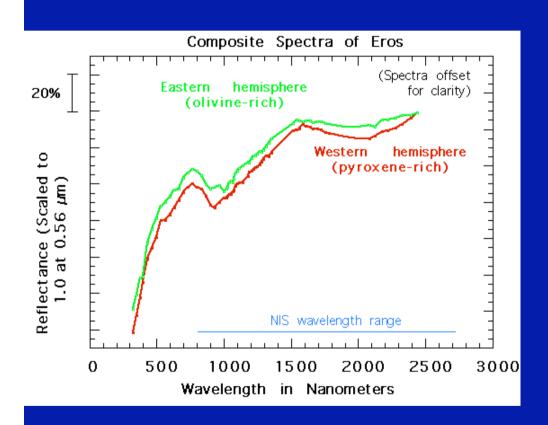

Astéroïdes: principales signatures spectrales

0.506 μm	Augite (pyr. riche en Ca)	V
0.6/0.67 μm	Fe-Ni oxydé	S
0,65 μm	Olivine riche en Fe	A
0.7 μm	$Fe^{2+} \rightarrow Fe^{3+}$ phyllosilicates	С
0.9 μm	Olivine et pyroxène	S, V, A, R
1.9 μm	Pyroxène	S, R
3.0/3.1 μm	OH, H2O (ou FeS)	C, M
10 μm	silicates	V

Principales classes


- type C (40 %): sombres (albedo ~ 0.04), peu de signatures spectrales sinon celles des silicates hydratés spectres similaires aux chondrites carbonées CI, CM
- type S (30%): albedo ~0.15, bandes d'absorption des pyroxènes et olivines, analogue aux chondrites ordinaires ? (implique space weathering)
- type D et P (5-10%) : sombres, rouges, pas de signatures spectrales primitifs, pas d'analogues météoritiques
- type M : albedo ~0.15, pas de signatures des silicates contreverse: analogues aux météorites ferreuses ou chondrites à enstatite ?

La classe C


- Astéroïdes carbonés
- Similaires aux météorites CI et CM
- Albédo= 0,03 0,07
- Absorption UV avant 0,4µm
- Spectre plat, légèrement rouge après 0.4µm
- Sous-classes: B, F, G

Murchison (Australia, 1969)

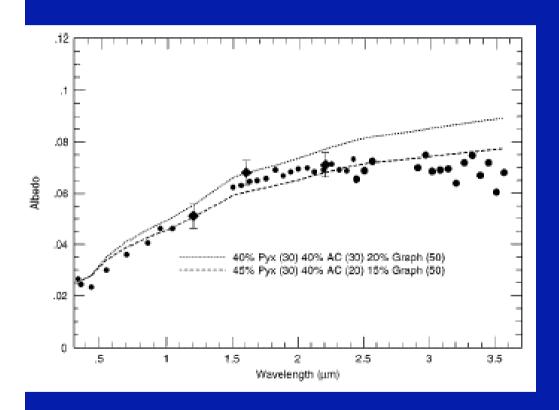
Silicates hydratés, carbone, organiques

La classe S

- Astéroïdes pierreux
- Similaires aux pallasites
- Albédo= 0,1 0,22
- Forte absorption UV avant 0,7µm (oxyde de fer)
- bandes d'absorption autour de 1 et 2 μm

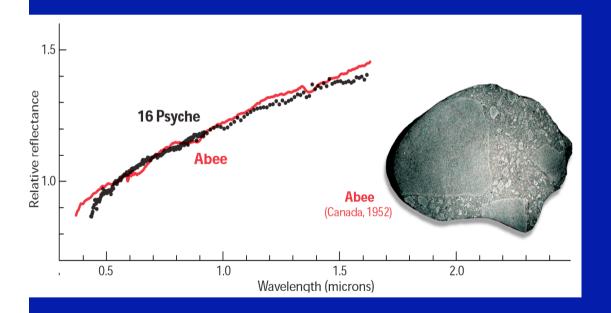
Olivine, pyroxène, métaux

Le complexe S


- Les sous-type sont des mixtures d'olivine et de pyroxène
- Chacun représente une histoire minéralogique et géologique propre
- Seule la classe S(IV) ressemble spectralement aux chondrites ordinaires

•Olivine: (Mg,Fe)₂SiO₄

•Pyroxène: (Mg,Fe,Ca)SiO₃


Les classes D et P

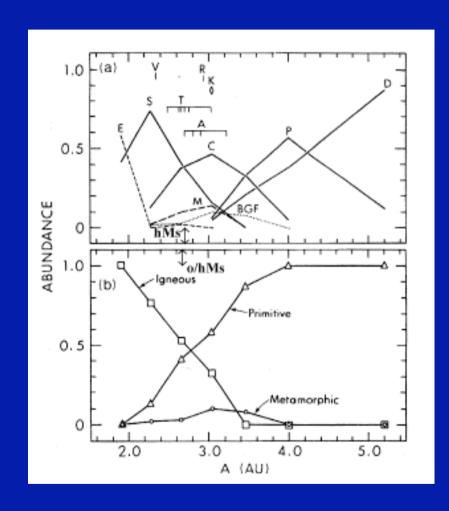
- Astéroïdes riches en organiques
- Pas d'analogue météorite
- Albédo= 0,02 0,05
- Sans absorptions
- Spectre rouge

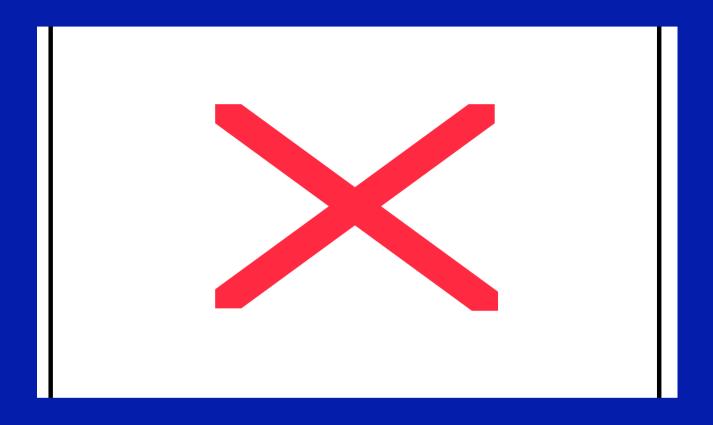
Carbone, organiques + silicates anhydres

La classe M

- Astéroïdes Métallo pierreux
- Similaires aux météorites de fer ou aux chondrites à enstatite
- Albédo= 0,1 0,18
- Sans absorptions
- Spectre plat à rouge

Métal ou métal+enstatite


Distribution dans le Système Solaire


- Gradient de composition dans la nébuleuse primitive ?
- Différenciation plus importante dans les régions internes
- <u>Source</u>: Eléments radioactifs à courte période ²⁶Al, ⁶⁰Fe ?

Chauffage par induction électromagnétique durant phase T-Tauri ?

Gradient de composition : source de chauffage plus intense dans les régions internes

- Astéroïdes internes: évolués
- Astéroides externes : globalement primitifs : altération aqueuse (phyllosilicates) pour type C (signatures Fe²⁺/Fe³⁺ (0,7 μm) et OH/H₂O (3 μm))

Métamorphisme à degrés divers : différenciation magmatique perte des volatiles graphitisation des organiques circulation hydrothermale hydratation des silicates

Perspectives

Comètes:

Stardust, Rosetta nouvelles instrumentations

(par exemple ALMA)

Astéroïdes:

Rosetta

Retour d'échantillon (Cosmic Vision ?)

